Refine Your Search

Topic

Author

Search Results

Journal Article

Power Dense and Robust Traction Power Inverter for the Second-Generation Chevrolet Volt Extended-Range EV

2015-04-14
2015-01-1201
The Chevrolet Volt is an electric vehicle with extended-range that is capable of operation on battery power alone, and on engine power after depletion of the battery charge. First generation Chevrolet Volts were driven over half a billion miles in North America from October 2013 through September 2014, 74% of which were all-electric [1, 12]. For 2016, GM has developed the second-generation of the Volt vehicle and “Voltec” propulsion system. By significantly re-engineering the traction power inverter module (TPIM) for the second-generation Chevrolet Volt extended-range electric vehicle (EREV), we were able to meet all performance targets while maintaining extremely high reliability and environmental robustness. The power switch was re-designed to achieve efficiency targets and meet thermal challenges. A novel cooling approach enables high power density while maintaining a very high overall conversion efficiency.
Journal Article

Exhaust Valve & Valve Seat Insert – Development for an Industrial LPG Application

2009-05-13
2009-01-1602
Automotive engines are regularly utilized in the material handling market where LPG is often the primary fuel used. When compared to gasoline, the use of gaseous fuels (LPG and CNG) as well as alcohol based fuels, often result in significant increases in valve seat insert (VSI) and valve face wear. This phenomenon is widely recognized and the engine manufacturer is tasked to identify and incorporate appropriate valvetrain material and design features that can meet the ever increasing life expectations of the end-user. Alternate materials are often developed based on laboratory testing – testing that may not represent real world usage. The ultimate goal of the product engineer is to utilize accelerated lab test procedures that can be correlated to field life and field failure mechanisms, and then select appropriate materials/design features that meet the targeted life requirements.
Journal Article

Safety Analysis of Software-intensive Motion Control Systems

2009-04-20
2009-01-0756
The auto industry has had decades of experience with designing safe vehicles. The introduction of highly integrated features brings new challenges that require innovative adaptations of existing safety methodologies and perhaps even some completely new concepts. In this paper, we describe some of the new challenges that will be faced by all OEMs and suppliers. We also describe a set of generic top-level potential hazards that can be used as a starting point for the Preliminary Hazard Analysis (PHA) of a vehicle software-intensive motion control system. Based on our experience with the safety analysis of a system of this kind, we describe some general categories of hazard causes that are considered for software-intensive systems and can be used systematically in developing the PHA.
Technical Paper

Application of Principle Component Analysis to Low Speed Rear Impact - Design for Six Sigma Project at General Motors

2009-04-20
2009-01-1204
This study involves an application of Principal Component Analysis (PCA) conducted in support of a Design for Six Sigma (DFSS) project. Primary focus of the project is to optimize seat parameters that influence Low Speed Rear Impact (LSRI) whiplash performance. During the DFSS study, the project team identified a need to rank order critical design factors statistically and establish their contribution to LSRI performance. It is also required to develop a transfer function for the LSRI rating in terms of test response parameters that can be used for optimization. This statistical approach resulted in a reliable transfer function that can applied across all seat designs and enabled us to separate vital few parameters from several many.
Technical Paper

Predicting Running Vehicle Exhaust Back Pressure in a Laboratory Using Air Flowing at Room Temperature and Spreadsheet Calculations

2009-04-20
2009-01-1154
In today’s highly competitive automotive environment people are always looking to develop processes that are fast, efficient, and effective. Moving testing from expensive prototype vehicles into the laboratory is an approach being implemented for many different vehicle subsystems. Specifically a process has recently been developed at General Motors that predicts exhaust back pressure performance for a running vehicle using laboratory testing and spreadsheet calculations. This paper describes the laboratory facility and procedure, the theory behind the calculations, and the correlation between vehicle test and laboratory based results. It also comments on the benefits of the process with respect to reduction in design iterations, quicker availability of results, and money savings.
Technical Paper

Data-Driven Driving Skill Characterization: Algorithm Comparison and Decision Fusion

2009-04-20
2009-01-1286
By adapting vehicle control systems to the skill level of the driver, the overall vehicle active safety provided to the driver can be further enhanced for the existing active vehicle controls, such as ABS, Traction Control, Vehicle Stability Enhancement Systems. As a follow-up to the feasibility study in [1], this paper provides some recent results on data-driven driving skill characterization. In particular, the paper presents an enhancement of discriminant features, the comparison of three different learning algorithms for recognizer design, and the performance enhancement with decision fusion. The paper concludes with the discussions of the experimental results and some of the future work.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Technical Paper

Simulation and Test Results for Several Variable-Valve-Actuation Mechanisms

2009-04-20
2009-01-0229
We start our study with a survey of existing variable valve actuation (VVA) devices. We then describe our work, taken place over a time period from 2001 to 2007, on several VVA concepts. All of our projects described include pre-design modeling and simulation. Also, for each one of the proposed designs, a bench-top motorized test fixture was built and ran for proof of concept. Our projects represent a mixture of exploratory research and production-related development work. They can be classified in four broad categories: discrete-step systems; mechanical continuously-variable systems; active stationary-hydraulic lash adjusters; cam-driven hydraulic-lost-motion mechanism. These devices differ in their complexity and versatility but offer a spectrum of design solutions applicable to a range of products. Specific attributes of these different approaches are analyzed and discussed, and some test results are presented.
Technical Paper

Exhaust Backpressure Estimation for an Internal Combustion Engine with a Variable Geometry Turbo Charger

2009-04-20
2009-01-0732
Exhaust gas recirculation (EGR) is one of the key approaches applied to reduce emissions for an internal combustion engine. Recirculating a desired amount of EGR requires accurately estimating EGR mass flow. This can be calculated either from the gas flow equation of an orifice, or from the difference between charge air mass flow and fresh air mass flow. Both calculations need engine exhaust pressure as an input variable. This paper presents a method to estimate exhaust pressure for a variable geometry turbo charged diesel engine. The method is accurate and simple to fit production ECU application, therefore, saves cost of using a physical sensor.
Technical Paper

Closed Loop Pressure Control System Development for an Automatic Transmission

2009-04-20
2009-01-0951
This paper presents the development of a transmission closed loop pressure control system. The objective of this system is to improve transmission pressure control accuracy by employing closed-loop technology. The control system design includes both feed forward and feedback control. The feed forward control algorithm continuously learns solenoid P-I characteristics. The closed loop feedback control has a conventional PID control with multi-level gain selections for each control channel, as well as different operating points. To further improve the system performance, Robust Optimization is carried out to determine the optimal set of control parameters and controller hardware design factors. The optimized design is verified via an L18 experiment on spin dynamometer. The design is also tested on vehicle.
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Journal Article

Pneumatic Brake Apply System Response and Aero-Acoustic Performance Considerations

2008-04-14
2008-01-0821
Over the past decade, the automotive industry has seen a rapid decrease in product development cycle time and an ever increasing need by original equipment manufacturers and their suppliers to differentiate themselves in the marketplace. This differentiation is increasingly accomplished by introducing new technology while continually improving the performance of existing automotive systems. In the area of automotive brake system design, and, in particular, the brake apply subsystem, an increased focus has been placed on the development of electrohydraulic apply systems and brake-by-wire systems to replace traditional pneumatic and hydraulic systems. Nevertheless, the traditional brake apply systems, especially vacuum-based or pneumatic systems, will continue to represent the majority of brake apply system production volume into the foreseeable future, which underscores the need to improve the performance and application of these traditional systems in passenger cars and light-trucks.
Journal Article

The Electrification of the Automobile: From Conventional Hybrid, to Plug-in Hybrids, to Extended-Range Electric Vehicles

2008-04-14
2008-01-0458
A key element of General Motors' Advanced Propulsion Technology Strategy is the electrification of the automobile. The objectives of this strategy are reduced fuel consumption, reduced emissions and increased energy security/diversification. The introduction of hybrid vehicles was one of the first steps as a result of this strategy. To determine future opportunities and direction, an extensive study was completed to better understand the ability of Plug-in Hybrid Electric Vehicles (PHEV) and Extended-Range Electric Vehicles (E-REV) to address societal challenges. The study evaluated real world representative driving datasets to understand actual vehicle usage. Vehicle simulations were conducted to evaluate the merits of PHEV and E-REV configurations. As derivatives of conventional full hybrids, PHEVs have the potential to deliver a significant reduction in petroleum usage.
Technical Paper

Designing Automotive Subsystems Using Virtual Manufacturing and Distributed Computing

2008-04-14
2008-01-0288
Adopting robust design principles is a proven methodology for increasing design reliability. General Motors Powertrain (GMPT) has incorporated robust design principles into their Signal Delivery Subsystem (SDSS) development process by moving traditional prototype manufacturing and test functions from hardware to software. This virtual manufacturing technique, where subsystems are built and tested using simulation software, increases the number of possible prototype iterations while simultaneously decreasing the time required to gather statistically meaningful test results. This paper describes how virtual manufacturing was developed using distributed computing.
Technical Paper

Robust Assessment of USCAR Electrical Connectors Using Standardized Signal-To-Noise

2008-04-14
2008-01-0364
Robust assessment using standardized signal-to-noise (SS/N) is a Design For Six Sigma (DFSS) methodology used to assess the mating quality of USCAR electrical connectors. When the insertion force vs. distance relationship is compared to a standard under varying environmental and system-related noise conditions, the ideal function is transformed into a linear relationship between actual and ideal force at the sample points acquired during the mating displacement. Since the ideal function used in the robust assessment of competing designs has a linear slope of 1 through the origin, the SS/N function used is of the form 10 log (1/σ2), also known as nominal-the-best type 2. Using this assessment methodology, designs are compared, with a higher SS/N indicating lower variation from the standard.
Technical Paper

Brake Noise Analysis with Lining Wear

2008-04-14
2008-01-0823
It is well known that lining reduction through wear affects contact pressure profile and noise generation. Due to high complexity in brake noise analysis, many factors were not included in previous analyses. In this paper, a new analysis process is performed by running brake “burnishing” cycles first, followed by noise analysis. In the paper, brake lining reduction due to wear is assumed to be proportional to the applied brake pressure with ABAQUS analysis. Brake pads go through four brake application-releasing cycles until the linings settle to a more stable pressure distribution. The resulting pressure profiles show lining cupping and high pressure spots shifting. The pressure distributions are compared to TekScan measurements. Brake noise analysis is then conducted with complex eigenvalue analysis steps; the resulting stability chart is better correlated to testing when the wear is comprehended.
Technical Paper

An Engineering Method for Part-load Engine Simulation

2007-10-29
2007-01-4102
This work provides an effective engineering method of building a part-load engine simulation model from a wide-open throttle (WOT) engine model and available dynamometer data. It shows how to perform part-load engine simulation using optimizer for targeted manifold absolute air pressure (MAP) on a basic matrix of engine speed and MAP. Key combustion parameters were estimated to cover the entire part-load region based on affordable assumptions and limitations. Engine rubbing friction and pumping friction were combined to compare against the motoring torque. The emission data from GM dynamometer laboratory were used to compare against engine simulation results after attaching the RLT sensor to record emission data in the engine simulation model.
Technical Paper

Computational Aeroacoustics Investigation of Automobile Sunroof Buffeting

2007-05-15
2007-01-2403
A numerical investigation of automobile sunroof buffeting on a prototype sport utility vehicle (SUV) is presented, including experimental validation. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using the PowerFLOW code, a CFD/CAA software package from Exa Corporation based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution.
Technical Paper

SAE Standard Procedure J2747 for Measuring Hydraulic Pump Airborne Noise

2007-05-15
2007-01-2408
This work discusses the development of SAE procedure J2747, “Hydraulic Pump Airborne Noise Bench Test”. This is a test procedure describing a standard method for measuring radiated sound power levels from hydraulic pumps of the type typically used in automotive power steering systems, though it can be extended for use with other types of pumps. This standard was developed by a committee of industry representatives from OEM's, suppliers and NVH testing firms familiar with NVH measurement requirements for automotive hydraulic pumps. Details of the test standard are discussed. The hardware configuration of the test bench and the configuration of the test article are described. Test conditions, data acquisition and post-processing specifics are also included. Contextual information regarding the reasoning and priorities applied by the development committee is provided to further explain the strengths, limitations and intended usage of the test procedure.
Technical Paper

Dynamic Moving Mesh CFD Study of Semi-truck Passing a Stationary Vehicle with Hood Open

2007-04-16
2007-01-0111
This paper examines the aerodynamic forces on the open hood of a stationary vehicle when another large vehicle, such as an 18-wheel semi-truck, passes by at high speed. The problem of semi-truck passing a parked car with hood open is solved as a transient two-vehicle aerodynamics problem with a Dynamic Moving Mesh (DMM) capability in commercial CFD software package FLUENT. To assess the computational feasibility, a simplified compact car / semi-truck geometry and CFD meshes are used in the first trial example. At 70 mph semi-truck speed, the CFD results indicate a peak aerodynamic force level of 20N to 30N on the hood of the car, and the direction of the net forces and moments on the hood change multiple times during the passing event.
X