Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Experimental and Numerical Study of the DrivAer Model Aerodynamics

2018-04-03
2018-01-0741
The DrivAer model, a detailed generic open source vehicle geometry, was introduced a few years ago and accepted widely from industry and academia for research in the field of automotive aerodynamics. This paper presents the evaluation of the aerodynamic properties of the 25% scale DrivAer model in both, CFD and in wind tunnel experiment. The results not only include aerodynamic drag and lift but also provide detailed investigations of the flow field around the vehicle. In addition to the available geometries of the DrivAer model, individual changes were introduced created by morphing the geometry of the baseline model. A good correlation between CFD and experiment could be achieved by using a CFD setup including the geometry of the wind tunnel test section. The results give insight into the aerodynamics of the DrivAer model and lead to a better understanding of the flow around the vehicle.
Journal Article

CFD Correlation with Wind-Tunnel for Dry Van Trailer Aerodynamic Devices

2016-09-27
2016-01-8016
The primary purpose of this paper is to correlate the CFD simulations performed using PowerFLOW, a Lattice Boltzmann based method, and wind tunnel tests performed at a wind tunnel facility on 1/8th scaled tractor-trailer models. The correlations include results using an aerodynamic-type tractor paired with several trailer configurations, including a baseline trailer without any aerodynamic devices as well as combinations of trailer side skirts and a tractor-trailer gap flow management device. CFD simulations were performed in a low blockage open road environment at full scale Reynolds number to understand how the different test environments impact total aerodynamic drag values and performance deltas between trailer aerodynamic devices. There are very limited studies with the Class-8 sleeper tractor and 53ft long trailer comparing wind tunnel test and CFD simulation with and without trailer aerodynamic device. This paper is to fill this gap.
Technical Paper

CFD Comparison with Wind-Tunnel for a Class 8 Tractor-Trailer

2016-09-27
2016-01-8140
Recent regulations on greenhouse gas (GHG) emission standards for heavy-duty vehicles have prompted government agencies to standardize procedures assessing the aerodynamic performance of Class 8 tractor-trailers. The coastdown test procedure is the primary reference method employed to assess vehicle drag currently, while other valid alternatives include constant speed testing, computational fluid dynamics (CFD) simulations, and wind tunnel testing. The main purpose of this paper is to compare CFD simulations with a corresponding 1/8th scale wind tunnel test. Additionally, this paper will highlight the impacts of wind tunnel testing on the total drag coefficient performance as compared to full scale open road analysis with and without real world, upstream turbulence wind conditions. All scale model testing and CFD simulations were performed on a class 8 tractor with a standard 53-foot dry-box trailer. The wind tunnel testing was performed in the Auto Research Center (ARC) wind tunnel.
Technical Paper

Validation Study for the Introduction of an Aerodynamic Development Process of Heavy Trucks

2014-09-30
2014-01-2444
A challenge for the aerodynamic optimization of trucks is the limited availability of wind tunnels for testing full scale trucks. FAW wants to introduce a development process which is mainly based on CFD simulation in combination with some limited amount of wind tunnel testing. While maturity of CFD simulation for truck aerodynamics has been demonstrated in recent years, a complete validation is still required before committing to a particular process. A 70% scale model is built for testing in the Shanghai Automotive Wind Tunnel Center (SAWTC). Drag and surface pressures are measured for providing a good basis for comparison to the simulation results. The simulations are performed for the truck in the open road driving condition as well as in an initial digital model of the aerodynamic wind tunnel of SAWTC. A full size truck is also simulated in the open road driving condition to understand the scaling effect.
Journal Article

Simulation of Underbody Contribution of Wind Noise in a Passenger Automobile

2013-05-13
2013-01-1932
Wind noise is a significant source of interior noise in automobiles at cruising conditions, potentially creating dissatisfaction with vehicle quality. While wind noise contributions at higher frequencies usually originate with transmission through greenhouse panels and sealing, the contribution coming from the underbody area often dominates the interior noise spectrum at lower frequencies. Continued pressure to reduce fuel consumption in new designs is causing more emphasis on aerodynamic performance, to reduce drag by careful management of underbody airflow at cruise. Simulation of this airflow by Computational Fluid Dynamics (CFD) tools allows early optimization of underbody shapes before expensive hardware prototypes are feasible. By combining unsteady CFD-predicted loads on the underbody panels with a structural acoustic model of the vehicle, underbody wind noise transmission could be considered in the early design phases.
Technical Paper

The Aerodynamic Development of the Tesla Model S - Part 1: Overview

2012-04-16
2012-01-0177
The Tesla Motors Model S has been designed from a clean sheet of paper to prove that no compromises to a desirable aesthetic style and world class driving experience are necessary in order to be energy efficient. Aerodynamic optimization is a major contributor to the overall efficiency of an electric vehicle and the close integration of the Design and Engineering groups at Tesla Motors was specifically arranged to process design iterations quickly and enable the fully informed development of the exterior surfaces at a very rapid pace. Clear communication and a working appreciation of each other's priorities were vital to this collaboration and underpinning this was extensive use of the powerful analysis and visualization capabilities of CFD. CFD was used to identify and effectively communicate the nature of beneficial and detrimental design features and to find ways to enhance or ameliorate them accordingly.
Journal Article

Combined Analysis of Cooling Airflow and Aerodynamic Drag for a Class 8 Tractor Trailer Combination

2011-09-13
2011-01-2288
Long haul tractor design in the future will be challenged by freight efficiency standards and emission legislations. Along with any improvements in aerodynamics, this will also require additional cooling capacity to handle the increased heat rejection from next generation engines, waste heat recovery and exhaust gas recirculation systems. Fan engagement will also have to be minimized under highway conditions to maximize fuel economy. These seemingly contradictory requirements will require design optimization via analysis techniques capable of predicting both the aerodynamic drag and engine cooling airflow accurately. This study builds on previous work [1] using a Lattice Boltzmann based computational method on a Volvo VNL tractor trailer combination. Simulation results are compared to tests conducted at National Research Council (NRC) Canada's wind tunnel.
Technical Paper

Aerodynamic Study of a Production Tractor Trailer Combination using Simulation and Wind Tunnel Methods

2010-10-05
2010-01-2040
The importance of fuel economy and emission standards has increased rapidly with high fuel costs and new environmental regulations. This requires analysis techniques capable of designing the next generation long-haul truck to improve both fuel efficiency and cooling. In particular, it is important to have a predictive design tool to assess how exterior design changes impact aerodynamic performance. This study evaluates the use of a Lattice Boltzmann based numerical simulation and the National Research Council (NRC) Canada's wind tunnel to assess aerodynamic drag on a production Volvo VNL tractor-trailer combination. Comparisons are made between the wind tunnel and simulation to understand the influence of wind tunnel conditions on truck aerodynamic performance. The production VNL testing includes a full range of yaw angles to demonstrate the influence of cross wind on aerodynamic drag.
Technical Paper

Aerodynamic Simulations of a Class 8 Heavy Truck: Comparison to Wind Tunnel Results and Investigation of Blockage Influences

2007-10-30
2007-01-4295
The accuracy of the Lattice-Boltzmann based simulation method for prediction of aerodynamic drag on a heavy truck was evaluated by comparing results to twenty percent scale model wind tunnel measurements from the University of Washington Aeronautical Laboratory (UWAL). A detailed preproduction Kenworth T2000 tractor trailer was used as the scale model. The results include a comparison of normalized drag between simulation and wind tunnel as well as percentage drag change with the addition of a radius to the rear edge of the trailer. Significant effort was involved to model all of the wind tunnel details affecting the tractor-trailer drag. These are discussed along with the results of additional simulations which were performed to study the impact of the UWAL tunnel geometry relative to a tunnel with the same blockage and constant cross-sectional area, and a case with negligible blockage.
Technical Paper

Exterior Airflow Simulations Using a Lattice Boltzmann Approach

2002-03-04
2002-01-0596
The purpose of this paper is to describe some of the technology behind the Lattice Boltzmann approach to exterior airflow simulations as incorporated into the commercial CFD code, PowerFLOW®. The fundamental approach used is the Lattice Boltzmann Method (LBM) coupled with both a turbulence model to recover the dissipation of sub-grid eddy scales and a wall model to allow reduced resolution in the near-wall region. A description of LBM and both models is given. Comparisons to methods that directly solve the Navier-Stokes equations, such as finite volume or finite element methods (hereafter, collectively referred to as RANS methods) are also presented. A demonstration of the technology is presented by comparing numerical simulations with extensive experimental test data on Ford's standard calibration models. These models were originally described in SAE paper 940323 [1].
X