Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Challenges in PM Measurement at 1 mg/mile and Tunnel Background Correction

2023-04-11
2023-01-0370
The LEV IV FTP PM limit in the recently approved CARB ACC II regulations for passenger cars and light duty trucks will be 1 mg/mile starting in 2025. Gravimetric PM measurement at these levels is very challenging as the net mass of PM on the filter in full flow tunnel testing ranges between 8 to 32 micrograms depending on amount of dilution. This is approaching tunnel background levels which, in combination with filter handling, static charge removal and microbalance instability, compounds the uncertainty. One major source of the uncertainty at these low levels is the tunnel contamination resulting in high variability from test to test and cell to cell. This tunnel background is mostly HC artifact which cannot be easily controlled and can be significantly higher than the 5-μg CFR allowable correction limit in some test cells.
Journal Article

Low-Cost Magnesium Alloy Sheet Component Development and Demonstration Project

2022-03-29
2022-01-0248
Most of the applications of magnesium in lightweighting commercial cars and trucks are die castings rather than sheet metal, and automotive applications of magnesium sheet have typically been experimental or low-volume serial production. The overarching objective of this collaborative research project organized by the United States Automotive Materials Partnership (USAMP) was to develop new low-cost magnesium alloys, and demonstrate warm-stamping of magnesium sheet inner and outer door panels for a 2013 MY Ford Fusion at a fully accounted integrated component cost increase over conventional steel stamped components of no more than $2.50/lb. saved ($5.50/kg saved). The project demonstrated the computational design of new magnesium (Mg) alloys from atomistic levels, cast new experimental alloy ingots and explored thermomechanical rolling processes to produce thin Mg sheet of desired textures.
Technical Paper

Effect of Casting Process on Strength Behaviour of Automotive Alloy Wheel

2021-04-06
2021-01-0800
Strength and fatigue assessment of chassis components are essentially influenced by the material used and manufacturing processes chosen. The manufacturing process of chassis components decides the variation in the mechanical properties of the component, which has an impact on the strength/fatigue performance. Investigating the design concerning the manufacturing processes is vital to the industry. Standard computer aided engineering (CAE) procedures for validating the alloy wheels usually consider the material properties as homogeneous. There was a gap between test results and CAE durability prediction (as per standard procedure). Incorporating the manufacturing process related characteristics with the strength simulation will be a viable solution to reduce this gap. This study was intended at developing a procedure for the strength analysis of an alloy wheel by considering the manufacturing process.
Technical Paper

Application of DFSS Taguchi Method to Design Robust Shock Tower

2021-04-06
2021-01-0234
Design for Six Sigma (DFSS) is an essential tool and methodology for innovation projects to improve the product design/process and performance. This paper aims to present an application of the DFSS Taguchi Method for an automotive/vehicle component. High-Pressure Vacuum Assist Die Casting (HPVADC) technology is used to make Cast Aluminum Front Shock Tower. During the vehicle life, Shock Tower transfers the road high impact loads from the shock absorber to the body structure. Proving Ground (PG) and washout loads are often used to assess part strength, durability life and robustness. The initial design was not meeting the strength requirement for abusive washout loads. The project identified eight parameters (control factors) to study and to optimize the initial design. Simulation results confirmed that all eight selected control factors affect the part design and could be used to improve the Shock Tower's strength and performance.
Technical Paper

Development of a Novel Test System to Determine the Durability of RTV Gasket Material

2020-04-14
2020-01-1069
This paper describes a laboratory-based test system and procedure for determining the durability of RTV sealant with fretting movement. A test machine is described in which shear and tensile stress-generating displacements at room temperature and temperature of 100°C are produced to load an RTV seal. The test system utilizes an air pressurized hollow cylinder with a cap sealed by RTV sealant on a reciprocating test rig. An external air leakage monitoring system detects the health of the tested RTV seal. When air leakage occurs, the seal is determined to have failed. RTV sealant used in the test was fully cured at room temperature and then aged with engine oil. In the experiments, a total of 6 displacements were used to generate cycle/amplitude graphs for both shear and tensile modes. Failures were determined to be caused by the loss of adhesion in tensile mode, and by crack nucleation due to the special step design in shear mode.
Technical Paper

Use of Active Vibration Control to Improve Vehicle Refinement while Expanding the Usable Range of Cylinder Deactivation

2019-06-05
2019-01-1571
Cylinder deactivation has been in use for several years resulting in a sizable fuel economy advantage for V8-powered vehicles. The size of the fuel-economy benefit, compared to the full potential possible, is often limited due to the amount of usable torque available in four-cylinder-mode being capped by Noise, Vibration, and Harshness (NVH) sensitivities of various rear-wheel-drive vehicle architectures. This paper describes the application and optimization of active vibration absorbers as a system to attenuate vibration through several paths from the powertrain-driveline into the car body. The use of this strategy for attenuating vibration at strategic points is shown to diminish the need for reducing the powertrain source amplitude. This paper describes the process by which the strategic application of these devices is developed in order to achieve the increased usage of the most fuel efficient reduced-cylinder-count engine-operating-points.
Technical Paper

Adapting Design for Six Sigma (DFSS) Methodology for Diesel Lean NOx Trap (LNT) Catalyst Screening

2016-04-05
2016-01-0953
In order to meet LEV III, EURO 6C and Beijing 6 emission levels, Original Equipment Manufacturers (OEMs) can potentially implement unique aftertreatment systems solutions which meet the varying legislated requirements. The availability of various washcoat substrates and PGM loading and ratio options, make selection of an optimum catalyst system challenging, time consuming and costly. Design for Six Sigma (DFSS) methodologies have been used in industry since the 1990s. One of the earliest applications was at Motorola where the methodology was applied to the design and production of a paging device which Consumer Reports called “virtually defect-proof”.[1] Since then, the methodology has evolved to not only encapsulate complicated “Variation Optimization” but also “Design Optimization” where multiple factors are in play. In this study, attempts are made to adapt the DFSS concept and methodology to identify and optimize a catalyst for diesel applications.
Technical Paper

Robust SCR Design Against Environmental Impacts

2016-04-05
2016-01-0954
Significant reduction in Nitrogen Oxide (NOx) emissions will be required to meet LEV III Emissions Standards for Light Duty Diesel passenger vehicles (LDD). As such, Original Equipment Manufacturers (OEMs) are exploring all possible aftertreatment options to find the best balance between performance, robustness and cost. The primary technology adopted by OEMs in North America to achieve low NOx levels is Selective Catalytic Reduction (SCR) catalyst. The critical parameters needed for SCR to work properly are: an appropriate reductant such as ammonia (NH3) typically provided as urea, adequate operating temperatures, and optimum Nitrogen Dioxide (NO2) to NOx ratios (NO2/NOx). The NO2/NOx ratio is mostly influenced by Precious Group Metals (PGM) containing catalysts located upstream of the SCR catalyst. Different versions of zeolite based SCR technologies are available on the market today and these vary in their active metal type (iron, copper, vanadium), and/or zeolite type.
Technical Paper

Track Bar Bracket Development with the Help of Advanced Optimization Techniques

2016-04-05
2016-01-1387
The advanced Optimization techniques help us in exploring the light weight architecture. This paper explains the process of designing a lightweight track bar bracket, which satisfies all durability performance targets. The mounting locations and load paths are critical factors that define the performance and help in the development of weight efficient structure. The process is to identify the appropriate bolt location through Design of Experiment (DOE) and topology based studies; followed by section and shape optimization that help to distribute material in a weight efficient manner across the structure. Load path study using topology optimization is performed to identify the load path for durability load cases. Further shape optimization is done using hyper study to determine the exact thickness of the webs and ribs. A significant weight reduction from the baseline structure is observed. This process may be applicable for all casting components.
Journal Article

Model-Based Control-Oriented Combustion Phasing Feedback for Fast CA50 Estimation

2015-04-14
2015-01-0868
The highly transient operational nature of passenger car engines makes cylinder pressure based feedback control of combustion phasing difficult. The problem is further complicated by cycle-to-cycle combustion variation. A method for fast and accurate differentiation of normal combustion variations and true changes in combustion phasing is addressed in this research. The proposed method combines the results of a feed forward combustion phasing prediction model and “noisy” measurements from cylinder pressure using an iterative estimation technique. A modified version of an Extended Kalman Filter (EKF) is applied to calculate optimal estimation gain according to the stochastic properties of the combustion phasing measurement at the corresponding engine operating condition. Methods to improve steady state CA50 estimation performance and adaptation to errors are further discussed in this research.
Journal Article

Input Adaptation for Control Oriented Physics-Based SI Engine Combustion Models Based on Cylinder Pressure Feedback

2015-04-14
2015-01-0877
As engines are equipped with an increased number of control actuators to meet fuel economy targets, they become more difficult to control and calibrate. The additional complexity created by a larger number of control actuators motivates the use of physics-based control strategies to reduce calibration time and complexity. Combustion phasing, as one of the most important engine combustion metrics, has a significant influence on engine efficiency, emissions, vibration and durability. To realize physics-based engine combustion phasing control, an accurate prediction model is required. This research introduces physics-based control-oriented laminar flame speed and turbulence intensity models that can be used in a quasi-dimensional turbulent entrainment combustion model. The influence of laminar flame speed and turbulence intensity on predicted mass fraction burned (MFB) profile during combustion is analyzed.
Journal Article

Impact of SCR Integration on N2O Emissions in Diesel Application

2015-04-14
2015-01-1034
Significant reduction in Nitrogen Oxide (NOx) emissions will be required to meet LEV III/Tier III Emissions Standards for Light Duty Diesel (LDD) passenger vehicles. As such, Original Equipment Manufacturers (OEMs) are exploring all possible aftertreatment options to find the best balance between performance, durability and cost. The primary technology adopted by OEMs in North America to achieve low NOx levels is Selective Catalytic Reduction (SCR). The critical parameters needed for SCR to work properly are: an appropriate reductant such as ammonia (NH3) provided as Diesel Exhaust Fluid (DEF), which is an aqueous urea solution 32.5% concentration in weight with water (CO(NH2)2 + H2O), optimum operating temperatures, and optimum nitrogen dioxide (NO2) to NOx ratios (NO2/NOx). The NO2/NOx ratio is most influenced by Precious Group Metals (PGM) containing catalysts upstream of the SCR catalyst.
X