Refine Your Search

Topic

Author

Search Results

Technical Paper

Proactive Battery Energy Management Using Navigation Information

2024-04-09
2024-01-2142
In this paper, a control strategy for state of charge (SOC) allocation using navigation data for Hybrid Electric Vehicle (HEV) propulsion systems is proposed. This algorithm dynamically defines and adjusts a SOC target as a function of distance travelled on-line, thereby enabling proactive management of the energy store in the battery. The proposed approach incorporates variances in road resistance and adheres to geolocation constraints, including ultra-low emission zones (uLEZ). The anticipated advantages are particularly pronounced during scenarios involving extensive medium-to-long journeys characterized by abrupt topological changes or the necessity for exclusive electric vehicle (EV) mode operation. This novel solution stands to significantly enhance both drivability and fuel economy outcomes.
Technical Paper

Next Generation High Efficiency Boosted Engine Concept

2024-04-09
2024-01-2094
This work represents an advanced engineering research project partially funded by the U.S. Department of Energy (DOE). Ford Motor Company, FEV North America, and Oak Ridge National Laboratory collaborated to develop a next generation boosted spark ignited engine concept. The project goals, specified by the DOE, were 23% improved fuel economy and 15% reduced weight relative to a 2015 or newer light-duty vehicle. The fuel economy goal was achieved by designing an engine incorporating high geometric compression ratio, high dilution tolerance, low pumping work, and low friction. The increased tendency for knock with high compression ratio was addressed using early intake valve closing (EIVC), cooled exhaust gas recirculation (EGR), an active pre-chamber ignition system, and careful management of the fresh charge temperature.
Technical Paper

Algorithm to Calibrate Catalytic Converter Simulation Light-Off Curve

2024-04-09
2024-01-2630
Spark ignition engines utilize catalytic converters to reform harmful exhaust gas emissions such as carbon monoxide, unburned hydrocarbons, and oxides of nitrogen into less harmful products. Aftertreatment devices require the use of expensive catalytic metals such as platinum, palladium, and rhodium. Meanwhile, tightening automotive emissions regulations globally necessitate the development of high-performance exhaust gas catalysts. So, automotive manufactures must balance maximizing catalyst performance while minimizing production costs. There are thousands of different recipes for catalytic converters, with each having a different effect on the various catalytic chemical reactions which impact the resultant tailpipe gas composition. In the development of catalytic converters, simulation models are often used to reduce the need for physical parts and testing, thus saving significant time and money.
Technical Paper

Virtual Accelerometer Approach to Create Vibration Profile for Automotive Component Shake Test

2023-04-11
2023-01-0722
Vibration shaker testing is a great tool of validating the vibration fatigue performance of automotive components & systems. However, the representative vibration schedule requires a pre-knowledge of the acceleration history for the test object, which usually is not available until the later development phase of a vehicle program when physical properties are available. Sometimes, a generic vibration schedule developed from the worst-case loading profiles are used with risk of lacking correlation with later full vehicle durability test such as Road Test Simulator (RTS) or Proving Ground (PG) road test due to the higher loading amplitude. This paper proposes a virtual accelerometer approach to collect acceleration responses of a component from a virtual vehicle model. First, a multiple body dynamic model will be produced for virtual load calculation over a series of digitalized virtual proving ground road profiles.
Technical Paper

Mathematical formulation and Analysis of Brake Judder

2023-04-11
2023-01-0148
The Brake judder is a low-level vibration caused due to Disc Thickness Variation (DTV), Temperature, Brake Torque Variation (BTV), thermal degradation, hotspot etc. which is a major concern for the past decades in automobile manufacturers. To predict the judder performance, the modelling methods are proposed in terms of frequency and BTV respectively. In this study, a mathematical model is constructed by considering full brake assembly, tie rod, coupling rod, steering column, and steering wheel as a spring mass system for identifying judder frequency. Simulation is also performed to predict the occurrence of brake judder and those results are validated with theoretical results. Similarly, for calculating BTV a separate methodology is proposed in CAE and validated with experimental and theoretical results.
Journal Article

Model-Based Thermal Control Strategy for Electrified Vehicles

2022-03-29
2022-01-0203
Stringent requirements for high fuel economy and energy efficiency mandate using increasingly complex vehicle thermal systems in most types of electrified vehicles (xEVs). Enabling the maximum benefits of such complex thermal systems under the full envelope of their operating modes demands designing complex thermal control systems. This is becoming one of the most challenging problems for electrified vehicles. Typically, the thermal systems of such vehicles have several modes of operation, constituting nonlinear multiple-input/multiple-output (MIMO) dynamic systems that cannot be efficiently controlled using classical or rule based strategies. This paper covers the different steps towards the design of a model-based control (MBC) strategy that can improve the overall performance of xEV thermal control systems. To achieve the above objective, the latter MBC strategy is applied to control cooling of the cabin and high voltage battery.
Technical Paper

FCA US LLC-Magnesium Closures Development

2021-04-06
2021-01-0278
This paper will focus on automotive development highlights of FCA US LLC magnesium intensive closures components. Deploying lightweight materials is one of many key strategies that has been implemented to reduce vehicle mass and improve overall fuel economy while maintaining rigorous functional objective performance. This paper will outline some basic design and manufacturing considerations for magnesium closures. The development of the 2017 Chrysler Pacifica liftgate and 2018 Jeep® Wrangler swing gate along with the two generations of magnesium spare tire brackets will be the focus.
Technical Paper

Optimum Engine Power Point Determination Method to Maximize Fuel Economy in Hybrid Vehicles

2021-04-06
2021-01-0419
One of the advantages of hybrid vehicles is the ability to operate the engine more optimally at a low brake specific fuel consumption (BSFC) as compared to conventional vehicles. This ability of hybrid vehicles is a major factor contributing to the fuel economy improvement over conventional vehicles. Unlike conventional gasoline powertrains, hybrid powertrains allow engine to be switched off and use battery power to propel vehicles. In order to maintain battery state of charge neutral operation between the start and end of a drive cycle, the net electrical energy consumption from the battery requires to be zero. An optimization algorithm can be developed and calibrated in different ways to achieve net zero battery energy over the cycle. For instance, the engine can be operated at powers higher than the power of the drive cycle to charge the battery. This accumulated energy can be used for all-electric propulsion by turning off the engine.
Technical Paper

Transient Thermal Modeling of an Automotive Rear-Axle

2021-04-06
2021-01-0569
In response to demands for higher fuel economy and stringent emission regulations, OEMs always strive hard to improve component/system efficiency and minimize losses. In the driveline system, improving the efficiency of an automotive rear-axle is critical because it is one of the major power-loss contributor. Optimum oil-fill inside an axle is one of the feasible solutions to minimize spin losses, while ensuring lubrication performance and heat-dissipation requirements. Thus, prior to conducting vehicle development tests, several dyno-level tests are conducted to study the thermal behavior of axle-oil (optimum level) under severe operating conditions. These test conditions represent the axle operation in hot weather conditions, steep grade, maximum tow capacity, etc. It is important to ensure that oil does not exceed its thermal limits (disintegration of oil leading to degradation).
Technical Paper

A Qualitative Comparison of the Macroscopic Spray Characteristics of Gasoline Mixtures and their Multi-Component Surrogates Using a Rapid Compression Machine

2021-04-06
2021-01-0558
Rapid Compression Machines (RCM) offer the ability to easily change the compression ratio and the pressure/mixture composition/temperature to gather ignition delay data at various engine relevant conditions. Therefore, RCMs with optical access to the combustion chamber can provide an effective way to analyze macroscopic spray characteristics needed to understand the spray injection process and for spray model development, validation and calibration at conditions that are suitable for engines. Fuel surrogates can help control fuel parameters, develop models for spray and combustion, and perform laser diagnostics with known fluorescence characteristics. This study quantifies and evaluates the macroscopic spray characteristics of multicomponent gasoline surrogates in comparison to their gasoline counterparts, under gasoline direct injection (GDI) engine conditions.
Technical Paper

A Rapid Compression Machine Study on Ignition Delay Times of Gasoline Mixtures and their Multicomponent Surrogate Fuels under Diluted and Undiluted Conditions

2021-04-06
2021-01-0554
In this work autoignition delay times of two multi-component surrogates (high and low RON) were experimentally compared with their target full blend gasoline fuels. The study was conducted in a rapid compression machine (RCM) test facility and a direct test chamber (DTC) charge preparation approach was used for mixture preparation. Experiments were carried over the temperature range of 650K-900K and at 10 bar and 20 bar compressed pressure conditions for equivalence ratios of (Φ =) 0.6-1.3. Dilution in the reactant mixture was varied from 0% to 30% CO2 (by mass), with the O2:N2 mole ratio fixed at 1:3.76. This dilution strategy emulates exhaust gas recirculation (EGR) substitution in spark ignition (SI) engines. The multicomponent surrogate captured the reactivity trends of the gasoline-air mixtures reasonably well in comparison to the single component (iso-octane) surrogate.
Technical Paper

Fuel-to-Warm Methodology: Optimization Tool for Distributing Waste Heat during Warm-Up within the Powertrain System

2021-04-06
2021-01-0210
The heat generated by an internal combustion engine must be dissipated to maintain acceptable component temperatures throughout the entire powertrain system under all operating conditions. However, under cold start conditions it is beneficial to retain this available heat to achieve faster warm-up in order to reduce fuel consumption. In modern engines there are several components in the coolant circuit that are used to accelerate the warm-up of sub-system fluids such as the engine oil, transmission oil and axle oil. The magnitude of the fuel consumption reduction will depend on how these rapid warm-up devices are arranged, combined and controlled. This paper describes a methodology that was developed to optimize the distribution of coolant heat in the powertrain system during warm-up. A comparative study can be performed to optimize the arrangement of each heat exchanger in any given powertrain system to minimize cost and time early in development.
Technical Paper

Novel Methodology to Compute Halfshaft Joint Forces and Virtually Simulate Powertrain Wiggle

2021-04-06
2021-01-0665
Vibrations affect vehicle occupants and should be prevented early in design process. Powertrain (PT) wiggle is one of the well-known issues. It is the 3rd order lateral vibration, forced by half shaft inner LH/RH plunging tripod joints [1,2]. Lateral PT resonance (7-15Hz) occurs at certain vehicle speed during acceleration and may excite lateral, pitch and roll PT modes. Typically, PT wiggle occurs in speed range of 5-25kph. Vibration is noticeable on driver and passenger seats mostly in lateral direction. The inner half shaft joints are the major source of vibration. Unfortunately, existing MBD tools like Adams [3] are missing detailed tripod joint representation because of complex mechanical interactions inside the joint. At least three sliding contacts between tripod rollers and joint housing, lubricant inside the can and combination of rotation and plunging make the modeling too complicated.
Technical Paper

A Novel Strategy for Sizing the Mechanical Pump in a Passenger Car Automatic Transmission

2021-04-06
2021-01-0692
In recent decades, there has been a growing focus on improving overall vehicle efficiency and fuel economy due to growing customer awareness and more stringent environmental regulations. Effort has been placed on improving the engine efficiency and reducing the losses of the transmission and driveline. One essential component of this process is to correctly size the transmission oil pump as it is one of the main energy consumers in the powertrain. Conversely, the oil pump has a critical mission of ensuring reliable and high quality gear shift as well as supplying lubrication and cooling oil to various components in the transmission. This paper outlines a strategy to systematically understand and quantify the main requirements for sizing the oil pump to ensure adequate performance while minimizing the energy consumption of the pump. The proposed framework is a three-legged approach.
Technical Paper

Case Study of Diesel Catalyst Performance Sensitivity and Degradation due to Alkali Metal Poisoning from Suspicious Use of Unregulated Fuel

2021-04-06
2021-01-0614
Advances in diesel engine and catalyst technologies have enabled light passenger vehicles in meeting the most stringent Tier 3/LEV III emission levels and durability requirements. The advancements in diesel aftertreatment catalyst technology have made catalysts more susceptible to low levels of impurities, typically referred to as poisons. Published studies over the last two decades, have shown a significant impact on the performance of catalysts, to the presence of sulfur and other inorganics in fuels and oils. The design of an aftertreatment system (ATS) typically sets limits for lubricant and fuel quality, specific to the geographical region and availability of certain level of regulated fuels. In this study, we investigate a real-world aged diesel vehicle which exhibited deterioration in tailpipe emissions, beyond levels targeted during engineering development.
Technical Paper

IC Engine Internal Cooling System Modelling Using 1D-CFD Methodology

2020-04-14
2020-01-1168
Internal combustion engine gets heated up due to continuous combustion of fuel. To keep engine working efficiently and prevent components damage due to very high temperature, the engine needs to be cooled down. Based on power output requirement and provision for cooling system, every engine has it’s unique cooling system. Liquid based cooling systems are majorly implemented in automobile. It’s important to keep in mind that during design phase that, cooling the engine will lower the power to fuel consumption ratio. Therefore, during lower ambient conditions, the cooling system should be able to uniformly increase the temperature of the engine components, engine oil and transmission oil. This is achieved by circulating the coolant through cooling jacket, engine oil heater and transmission oil heater, which will be heated by the combustion heat.
Technical Paper

Novel CAE CV Joint Modeling Method for Driveline Half-Shaft at Idle Condition

2020-04-14
2020-01-1265
Idle shake is an important NVH attribute. Vehicles with good NVH characteristics are designed to perform excellent in IDLE and SHAKE conditions. Typically, tactile vibrations at idle are measured at the driver seat and steering wheel. Vibrations caused by engine excitation at idle are passed through several paths to the body structure. The dominant paths being the engine mounts and the half-shafts, either one of them or both can be a major factor influencing the perceived idle vibration in a vehicle. In the past, modeling the half-shafts accurately has been a challenge and often time has been ignored because of modeling complexity. This has led to idle CAE predictions not correlating with test data. The aim of this paper is to describe a finite element modeling method of half-shaft to predict idle vibrations levels.
Technical Paper

Virtual Method for Electronic Stop-Start Simulation & VDV Prediction Using Modified Discrete Signal Processing for Short Time Signals

2020-04-14
2020-01-1270
Electronic Stop-Start (ESS) system automatically stops and restarts the engine to save energy, improve fuel economy and reduce emissions when the vehicle is stationary during traffic lights, traffic jams etc. The stop and start events cause unwanted vibrations at the seat track which induce discomfort to the driver and passengers in the vehicle. These events are very short duration events, usually taking less than a second. Time domain analysis can help in simulating this event but it is difficult to see modal interactions and root cause issues. Modal transient analysis also poses a limitation on defining frequency dependent stiffness and damping for multiple mounts. This leads to inaccuracy in capturing mount behavior at different frequencies. Most efficient way to simulate this event would be by frequency response analysis using modal superposition method.
Technical Paper

Sensitivity Analysis of Aerodynamic Drag Coefficient to EPA Coastdown Ambient Condition Variation

2020-04-14
2020-01-0666
The test cycle average drag coefficient is examined for the variation of allowable EPA coastdown ambient conditions. Coastdown tests are ideally performed with zero wind and at SAE standard conditions. However, often there is some variability in actual ambient weather conditions during testing, and the range of acceptable conditions is further examined in detail as it pertains to the effect on aerodynamic drag derived from the coastdown data. In order to “box” the conditions acceptable during a coastdown test, a sensitivity analysis was performed for wind averaged drag (CD¯) as well as test cycle averaged drag coefficients (CDWC) for the fuel economy test cycles. Test cycle average drag for average wind speeds up to 16 km/h and temperatures ranging from 5C to 35C, along with variation of barometric pressure and relative humidity are calculated. The significant effect of ambient cross winds on coastdown determined drag coefficient is demonstrated.
Technical Paper

EGR Distribution in an Intake Manifold: Analysis, Dynamometer Correlation and Prediction

2020-04-14
2020-01-0840
Every passing year automotive engineers are challenged to attain higher fuel economy and improved emission targets. One widely used approach is to use Cooled Exhaust Gas Recirculation (CEGR) to meet these objectives. Apart from reducing emissions and improving fuel economy, CEGR also plays a significant role in knock mitigation in spark ignited gasoline engines. Generally, CEGR is introduced into the intake manifold in SI gasoline engine. Even though the benefits of using CEGR are significant, they can be easily negated by the uneven CEGR flow distribution between the cylinders, which can result in combustion instability. This paper describes the application of co-simulation between one and three dimensional tools to accurately predict the distribution of CEGR to the cylinders and the effect of its distribution on engine performance.
X