Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Transient Thermal Modeling of an Automotive Rear-Axle

2021-04-06
2021-01-0569
In response to demands for higher fuel economy and stringent emission regulations, OEMs always strive hard to improve component/system efficiency and minimize losses. In the driveline system, improving the efficiency of an automotive rear-axle is critical because it is one of the major power-loss contributor. Optimum oil-fill inside an axle is one of the feasible solutions to minimize spin losses, while ensuring lubrication performance and heat-dissipation requirements. Thus, prior to conducting vehicle development tests, several dyno-level tests are conducted to study the thermal behavior of axle-oil (optimum level) under severe operating conditions. These test conditions represent the axle operation in hot weather conditions, steep grade, maximum tow capacity, etc. It is important to ensure that oil does not exceed its thermal limits (disintegration of oil leading to degradation).
Technical Paper

EGR Distribution in an Intake Manifold: Analysis, Dynamometer Correlation and Prediction

2020-04-14
2020-01-0840
Every passing year automotive engineers are challenged to attain higher fuel economy and improved emission targets. One widely used approach is to use Cooled Exhaust Gas Recirculation (CEGR) to meet these objectives. Apart from reducing emissions and improving fuel economy, CEGR also plays a significant role in knock mitigation in spark ignited gasoline engines. Generally, CEGR is introduced into the intake manifold in SI gasoline engine. Even though the benefits of using CEGR are significant, they can be easily negated by the uneven CEGR flow distribution between the cylinders, which can result in combustion instability. This paper describes the application of co-simulation between one and three dimensional tools to accurately predict the distribution of CEGR to the cylinders and the effect of its distribution on engine performance.
X