Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

OBD Limit Part Creation Using DFSS Methodology: NMHC Catalyst Emissions Control System

2022-03-29
2022-01-0553
In the light duty diesel segment, the need persists for an advanced control system to monitor the health of an aftertreatment system throughout a vehicle’s life in order to maintain compliance with ever tightening emissions levels. In on-board diagnostics (OBD), every diagnostic is validated during development stages to detect when a system under monitoring of that diagnostic has failed. This necessitates the need to create parts which represent a failure that would be observed on the vehicle. These failed parts, referred to as limit or threshold parts, are developed through a limit part creation process. Although there are commonalities amongst Original Equipment Manufacturers (OEM), each OEM has their own detection logic which will require a unique and specific limit part. Various methods exist for creating these limit parts, and each method produces a different combination of ability to detect the failure and its associated tailpipe emissions.
Technical Paper

Methodology to Determine the Effective Volume of Gasoline Particulate Filter Technology on Criteria Emissions

2016-04-05
2016-01-0936
New Particulate Matter (PM) and Particulate Number (PN) regulations throughout the world have created a need for aftertreatment solutions that include particulate control as an option to comply with the legislation. However, limitations in other criteria emissions cannot be sacrificed to accomplish the reduction of PM/PN. For this work, three-way washcoat catalyzed wall-flow Gasoline Particulate Filters (GPF) and similarly catalyzed flow-through catalysts of common defined volume were tested. Their catalytic performance was determined by measuring NOx, CO and HC conversion efficiencies and CO2 levels over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) cycles. Analysis of the impact on CO2 emissions was also evaluated in relation to backpressure from 1-D modeling analysis. All exhaust systems used the same loading and ratio of Platinum Group Metals (PGM), but employed different cell structures in their substrates.
X