Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Modelling and Analysis of a Cooperative Adaptive Cruise Control (CACC) Algorithm for Fuel Economy

2024-04-09
2024-01-2564
Connectivity in ground vehicles allows vehicles to share crucial vehicle data, such as vehicle acceleration and speed, with each other. Using sensors such as radars and lidars, on the other hand, the intravehicular distance between a leader vehicle and a host vehicle can be detected. Cooperative Adaptive Cruise Control (CACC) builds upon ground vehicle connectivity and sensor information to form convoys with automated car following. CACC can also be used to improve fuel economy and mobility performance of vehicles in the said convoy. In this paper, a CACC system is presented, where the acceleration of the lead vehicle is used in the calculation of desired vehicle speed. In addition to the smooth car following abilities, the proposed CACC also has the capability to calculate a speed profile for the ego vehicle that is fuel efficient, making it an Ecological CACC (Eco-CACC) model.
Technical Paper

Trends in Driver Response to Forward Collision Warning and the Making of an Effective Alerting Strategy

2024-04-09
2024-01-2506
This paper compares the results from three human factors studies conducted in a motion-based simulator in 2008, 2014 and 2023, to highlight the trends in driver's response to Forward Collision Warning (FCW). The studies were motivated by the goal to develop an effective HMI (Human-Machine Interface) strategy that enables the required driver's response to FCW while minimizing the level of annoyance of the feature. All three studies evaluated driver response to a baseline-FCW and no-FCW conditions. Additionally, the 2023 study included two modified FCW chime variants: a softer FCW chime and a fading FCW chime. Sixteen (16) participants, balanced for gender and age, were tested for each group in all iterations of the studies. The participants drove in a high-fidelity simulator with a visual distraction task (number reading). After driving 15 minutes in a nighttime rural highway environment, a surprise forward collision threat arose during the distraction task.
Technical Paper

Side Impact Characteristics in Modern Light Vehicles

2024-04-09
2024-01-2646
Occupant protection in side impacts, in particular for near-side occupants, is a challenge due to the occupant’s close proximity to the impact. Near-side occupants have limited space to ride down the impact. Curtain and side airbags fill the gap between occupant and the side interior. This analysis was conducted to provide insight on the characteristics of side impacts and the relevancy of currently regulated test configurations. For this purpose, 2007-2015 NASS-CDS and 2017-2021 CISS side crash data were analyzed for towed light vehicles. 2008 and newer model year vehicle data was selected to ensure that most vehicles were equipped with side/curtain airbags. The results showed that side impacts accounted for approximately 26.7% of the vehicles involved and 18.9% of the vehicles with at least one seriously injured occupant. Most side impacts involved damage to the front and front-to-center of the vehicle.
Technical Paper

Energy Based Hysteresis for Real-Time State Optimization in Hybrid Torque Controls

2024-04-09
2024-01-2778
Through real-time online optimization, the full potential of the performance and energy efficiency of multi-gear, multi-mode, series–parallel hybrid powertrains can be realized. The framework allows for the powertrain to be in its most efficient configuration amidst the constantly changing hardware constraints and performance objectives. Typically, the different gears and hybrid/electric modes are defined as discrete states, and for a given vehicle speed and driver power demand, a formulation of optimization costs, usually in terms of power, are assigned to each discrete states and the state which has the lowest cost is naturally selected as the desired of optimum state. However, the optimization results would be sensitive to numerical exactitude and would typically lead to a very noisy raw optimum state. The generic approach to stabilization includes adding hysteresis costs to state-transitions and time-debouncing.
Technical Paper

Reduction of Computational Efforts to Obtain Parasitic Capacitances Using FEM in Three-Phase Permanent Magnet Motors

2024-04-09
2024-01-2742
The rise in demand for electric and hybrid vehicles, the issue of bearing currents in electric motors has become increasingly relevant. These vehicles use inverters with high frequency switch that generates the common mode voltage and current, the main factor responsible for bearing issues. In the machine structure, there are some parasitic capacitances that exist inherently. They provide a low impedance path for the generated current, which flows through the machine bearing. Investigating this problem in practical scenarios during the design stage is costly and requires great effort to measure these currents. For this reason, a strategy of analysis aided by electromagnetic simulation software can achieve desired results in terms of complexity and performance. This work proposes a methodology using Ansys Maxwell software to simulate two-dimensional (2D) and three-dimensional (3D) model of a three-phase permanent magnet motor with eight poles.
Technical Paper

Effect of Surface Roughness on Tribological and NVH Behaviour of Brake System

2024-04-09
2024-01-2732
Brake assemblies are an essential part of any vehicle, and their effective functioning is critical for the safety and comfort of passengers. The surface roughness of brake components plays a vital role in figuring out their tribological and NVH (Noise, Vibration, and Harshness) behavior. It is essential to understand the impact of surface roughness on brake performance to ensure efficient braking and it has been a topic of interest in the automotive industry. In this study, the influence of surface roughness on the wear, and noise characteristics of a brake assembly has been investigated. The study also provides insights into the relationship between surface roughness, frictional behavior, and NVH performance, which can be used to improve the design and manufacturing of brake assemblies. The brake assembly includes of a disc, caliper, and brake pads, which work together to convert the kinetic energy of the vehicle into heat energy, has been considered in this study.
Technical Paper

Connected Vehicle Data – Prognostics and Monetization Opportunity

2023-10-31
2023-01-1685
In recent years, the automotive industry has seen an exponential increase in the replacement of mechanical components with electronic-controlled components or systems. engine, transmission, brake, exhaust gas recirculation (EGR), lighting, driver-assist technologies, etc. are all monitored and/or controlled electronically. Connected vehicles are increasingly being used by Original Equipment Manufacturers (OEMs) to collect and transmit vehicle data in real-time via the use of various sensors, actuators, and communication technologies. Vehicle telematics devices can collect and transmit data about the vehicle location, speed, fuel efficiency, State Of Charge (SOC), auxiliary battery voltage, emissions, performance, and more. This data is sent over to the cloud via cellular networks, where it can be processed and analyzed to improve their products and services by automotive companies and/or fleet management.
Technical Paper

Verification of Driver Status Monitoring Camera Position Using Virtual Knowledge-Based Engineering

2023-04-11
2023-01-0090
A DMS (Driver Monitoring System) is one of the most important safety features that assist in the monitoring functions and alert drivers when distraction or drowsiness is detected. The system is based in a DSMC (Driver Status Monitoring Camera) mounted in the vehicle's dash, which has a predefined set of operational requirements that must be fulfilled to guarantee the correct operation of the system. These conditions represent a trade space analysis challenge for each vehicle since both the DSMC and the underlying vehicle’s requirements must be satisfied. Relying upon the camera’s manufacturer evaluation for every iteration of the vehicle’s design has proven to be time-consuming, resources-intensive, and ineffective from the decision-making standpoint.
Technical Paper

Modeling Electric Motors with High Fidelity for Accurate eDrive NVH Simulation

2023-04-11
2023-01-0533
A sophisticated finite element analysis (FEA) method for modeling interior permanent magnet (IPM) electric motors is presented. Based on this method, a coupled structural-acoustic analysis procedure was developed to simulate the motor dyno vibroacoustic responses with improved accuracy and reliability for NVH (noise, vibration, and harshness) behavior prediction over a wide range of torques and frequencies under the operational electromagnetic forces. The proposed motor modeling and analysis method is detail-oriented with high fidelity in modeling the structure and complex material representation. To effectively deal with the motor stator core constructed with large numbers of electromagnetic laminae, the unit-cell approach was employed to derive the core material properties by homogenizing the laminated core as an equivalent orthotropic material. Meanwhile, the windings were modeled by capturing the precise geometry for accuracy improvement.
Technical Paper

Residual Stress Induced Fretting Fatigue during Fatigue Testing for Materials Produced by Laser Powder Bed Fusion Process

2023-04-11
2023-01-0894
Fretting fatigue was observed in standard cylindrical fatigue samples at the regions in contact with the grips of the test frames during fatigue testing for AlSi10Mg aluminum alloy produced by laser powder bed fusion process (L-PBF). The failure of the fatigue sample grips occurs much earlier than the failure of the gauge section. This results in a damaged sample and the sample cannot be reused to continue the test. This type of failure is rarely seen in materials produced by traditional manufacturing processes. In this study, X-ray residual stress analysis was performed to understand the cause of failure for L-PBF AlSi10Mg with the as-built surface condition. The result indicates that the fretting fatigue failure was caused by the strong tensile residual stress in the as-built state combining with the fretting wear between the sample and the grip. A few potential solutions to avoid the fretting fatigue failure were investigated.
Technical Paper

Synergizing Artificial Intelligence with Product Recall Management Process

2023-04-11
2023-01-0867
There are a multitude of dynamics faced by any industry. There is also a consistent search and development of technological platforms and services to address these changes. This necessitates a shared work philosophy which involves multiple stakeholders. Verification and validation are integral part of any development irrespective of product, process, or services. Also, every industry has a regulatory compliance to adhere too. But the extent of complexity and the level of dependencies or interactions between modules as well as stakeholders involved, creates slippage at some or other level. Nowadays the industries are also driven by reuse for cost effectiveness. Though it marks the significant improvement in the capability to compete, compatibility is a key measure to a successful product or service launch and sustainability.
Technical Paper

Automotive Applications Multiaxial Proving Grounds and Road Test Simulator: Durability Prediction Methodology Development and Correlation for Rubber Components

2023-04-11
2023-01-0723
Many chassis and powertrain components in the transportation and automotive industry experience multi-axial cyclic service loading. A thorough load-history leading to durability damage should be considered in the early vehicle production steps. The key feature of rubber fatigue analysis discussed in this study is how to define local critical location strain time history based on nominal and complex load time histories. Material coupon characterization used here is the crack growth approach, based on fracture mechanics parameters. This methodology was utilized and presented for a truck engine mount. Temperature effects are not considered since proving ground (PG) loads are generated under isothermal high temperature and low frequency conditions without high amounts of self-heating.
Technical Paper

ES2re, WS50M, and Human Body Models in Far-Side Pole Impacts

2023-04-11
2023-01-0558
Driver oblique far-side sled impacts were simulated with three surrogates. The EuroSID side impact dummy with rib extension (ES2re), the WorldSID side impact 50th percentile male dummy (WS50M), and the Global Human Body Modeling Consortium’s 50th percentile male human body (GHBM) models. The versions of the surrogates’ models were 7.0, 7.5.1, and 5.0, respectively. Surrogates were seated in the front left driver seat in a virtual generic crossover sled environment. The Finite Element (FE) based environment consisted of a driver seat, a center console, and a passenger seat. Two restraint systems were considered for each surrogate: belt only (BO) and belt plus a generic seat-mounted far-side impact airbag (BB). Surrogates were restrained using a 3-point belt that has a digressive shoulder force load limiter, and retractor, and anchor pretensioners. The far-side airbag used was a 37-liter in volume and has two chambers.
Journal Article

Development of a Detailed 3D Finite Element Model for a Lithium-Ion Battery Subject to Abuse Loading

2023-04-11
2023-01-0007
Lithium-ion batteries (LIBs) have been used as the main power source for Electric vehicles (EVs) in recent years. The mechanical behavior of LIBs subject to crush loading is crucial in assessing and improving the impact safety of battery systems and EVs. In this work, a detailed 3D finite element model for a commercial vehicle battery was built, in order to better understand battery failure behavior under various loading conditions. The model included the major components of a prismatic battery jellyroll, i.e., cathodes, anodes, and separators. The models for these components were validated against the corresponding material coupon tests (e.g., tension and compression). Then the components were integrated into the cell level model for simulation of jellyroll loading and damage behavior under three types of compressive indenter loading: (1) Flat-end punch, (2) Hemispherical punch and (3) Round-edge wedge. The comparisons showed reasonable agreement between modeling and experiments.
Technical Paper

Sun Radiation Estimation on Display Screens through Virtual Simulation

2023-04-11
2023-01-0767
Currently the automotive industry has been under extremely important technological changes. Part of these changes are related to the way that users interact with the vehicle and fundamental components are the new digital cluster and screens. These devices have created a disruption in the way information is transmitted to the user, being essential for vehicle operation, including safety. Due to new operating conditions, multiple evaluations need to be performed, one of them is the solar temperature Load to ensure correct operation without compromising user safety. This test is required to identify the thermal performance on the screens mounted on the instrument panel. The performance identification is performed on both sides, analytical and physical. In regards finite element simulation it represents the solar chamber as the main source of heat and being the main mechanism of transmission the radiation.
Technical Paper

Evaluation of Drivers of Very Large Pickup Trucks: Size, Seated Height and Biomechanical Responses in Drop Tests

2023-04-11
2023-01-0649
This study focused on occupant responses in very large pickup trucks in rollovers and was conducted in three phases. Phase 1 - Field data analysis: In a prior study [9], 1998 to 2020 FARS data were analyzed; Pickup truck drivers with fatality were 7.4 kg heavier and 4.6 cm taller than passenger car drivers. Most pickup truck drivers were males. Phase 1 extended the study by focusing on the drivers of very large pickup trucks. The size of 1999-2016 Ford F-250 and F-350 drivers involved in fatal crashes was analyzed by age and sex. More than 90% of drivers were males. The average male driver was 179.5 ± 7.5 cm tall and weighed 89.6 ± 18.4 kg. Phase 2 – Surrogate study: Twenty-nine male surrogates were selected to represent the average size of male drivers of F-250 and F-350s involved in fatal crashes. On average, the volunteers weighed 88.6 ± 5.2 kg and were 180.0 ± 3.2 cm tall with a 95.2 ± 2.2 cm seated height.
Technical Paper

Experimental Characterization of Aluminum Alloys for the Automotive Industry

2023-02-10
2022-36-0031
Several factors stimulate the development of new materials in the industry. From specific physical-chemical characteristics to strategic market advantages, technology companies seek to diversify their raw materials. In the automotive sector, the current trend of electrification in vehicles and the increase of government and market demand for reducing the emission of greenhouse gases makes lighter materials more and more necessary. As electric vehicles use heavy batteries, the vehicle weight is directly related to its power demand and level of autonomy. The same applies to internal combustion vehicles where the vehicle weight directly impacts fuel consumption and emissions. In this context, there is a lot of research on special alloys and composites to replace traditional materials. Aluminum is a good alternative to steel due to its density which is almost five times smaller while that material still has good mechanical properties and has better impact absorption capability.
Technical Paper

Evolution of India EV Ecosystem

2022-10-05
2022-28-0035
Electric vehicles (EVs) are a promising and proven technology for achieving sustainable mobility with zero carbon emissions, very low noise pollution, and reducing the dependency on fossil fuels. Global EV sales have been increasing by ~110 % since 2015, with a significant rise in 2021 (~6.75 mils EV registered) mainly led by China, the US, and Europe, amplifying the EV market share to 8.3% compared to 4.2% in 2020. Future developments aimed at designing better batteries and charging technologies that reduce charging time, reduce initial battery cost, and increased flexibility. In India, EVs are emerging significantly due to stringent Carbon di Oxide (CO2) reduction drives, increasing crude oil prices, and the availability of cheaper renewable energy. Leveraging government promotional policies, evolving the entire ecosystem, globally advantageous manufacturing costs, and competitive engineering skills form the perfect blend for India.
Technical Paper

An Optimization Model for Die Sets Allocation to Minimize Supply Chain Cost

2022-07-08
2022-01-5057
In this paper, a novel mixed-integer programming model is developed to optimally assign the die sets to candidate plants to minimize the total costs. The total costs include freight shipping stamped parts to assembly plants, die set movement, outsourcing, and utilization. Therefore, the objective function is weighted multi-criteria and it takes into consideration some of the key constraints in the real-world condition including “must-move die sets”. An optimization tool has been developed that takes several inputs and feeds them as the input to the mathematical model and generates the optimal assignments with the directional costs as the output. The tool has been tested for several plants at Ford and has proved its robustness by saving millions of dollars. The developed tool can easily be applied to other manufacturing systems and original equipment manufacturers (OEMs).
Technical Paper

Test-in-Production Framework on a Microcontroller Environment

2022-03-29
2022-01-0112
In modern automobiles, many new complex features are enabled by software and sensors. When combined with the variability of real-world environments and scenarios, validation of this ever-increasing amount of software becomes complex, costly, and takes a lot of time. This challenges automakers ability to quickly and reliably develop and deploy new features and experiences that their customers want in the marketplace. While traditional validation methods and modern virtual validation environments can cover most new feature testing, it is challenging to cover certain real-world scenarios. These scenarios include variation in weather conditions, roadway environments, driver usage, and complex vehicle interactions. The current approach to covering these scenarios often relies on data collected from long vehicle test trips that try to capture as many of these unique situations as possible. These test trips contribute significantly to the validation cost and time of new features.
X