Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Proactive Battery Energy Management Using Navigation Information

2024-04-09
2024-01-2142
In this paper, a control strategy for state of charge (SOC) allocation using navigation data for Hybrid Electric Vehicle (HEV) propulsion systems is proposed. This algorithm dynamically defines and adjusts a SOC target as a function of distance travelled on-line, thereby enabling proactive management of the energy store in the battery. The proposed approach incorporates variances in road resistance and adheres to geolocation constraints, including ultra-low emission zones (uLEZ). The anticipated advantages are particularly pronounced during scenarios involving extensive medium-to-long journeys characterized by abrupt topological changes or the necessity for exclusive electric vehicle (EV) mode operation. This novel solution stands to significantly enhance both drivability and fuel economy outcomes.
Technical Paper

Modelling and Analysis of a Cooperative Adaptive Cruise Control (CACC) Algorithm for Fuel Economy

2024-04-09
2024-01-2564
Connectivity in ground vehicles allows vehicles to share crucial vehicle data, such as vehicle acceleration and speed, with each other. Using sensors such as radars and lidars, on the other hand, the intravehicular distance between a leader vehicle and a host vehicle can be detected. Cooperative Adaptive Cruise Control (CACC) builds upon ground vehicle connectivity and sensor information to form convoys with automated car following. CACC can also be used to improve fuel economy and mobility performance of vehicles in the said convoy. In this paper, a CACC system is presented, where the acceleration of the lead vehicle is used in the calculation of desired vehicle speed. In addition to the smooth car following abilities, the proposed CACC also has the capability to calculate a speed profile for the ego vehicle that is fuel efficient, making it an Ecological CACC (Eco-CACC) model.
Technical Paper

Next Generation High Efficiency Boosted Engine Concept

2024-04-09
2024-01-2094
This work represents an advanced engineering research project partially funded by the U.S. Department of Energy (DOE). Ford Motor Company, FEV North America, and Oak Ridge National Laboratory collaborated to develop a next generation boosted spark ignited engine concept. The project goals, specified by the DOE, were 23% improved fuel economy and 15% reduced weight relative to a 2015 or newer light-duty vehicle. The fuel economy goal was achieved by designing an engine incorporating high geometric compression ratio, high dilution tolerance, low pumping work, and low friction. The increased tendency for knock with high compression ratio was addressed using early intake valve closing (EIVC), cooled exhaust gas recirculation (EGR), an active pre-chamber ignition system, and careful management of the fresh charge temperature.
Technical Paper

Driving Towards a Sustainable Future: Leveraging Connected Vehicle Data for Effective Carbon Emission Management

2024-01-08
2023-36-0145
The rise of greenhouse gas emissions has reached historic levels, with 37 billion tons of CO2 released into the atmosphere in 2018 alone. In the European Union, 32% of these emissions come from transportation, with 73.3% of that percentage coming from vehicles. To address this problem, solutions such as cleaner fuels and more efficient engines are necessary. Artificial Intelligence can also play a crucial role in climate analysis and verification to move towards a more sustainable future. By utilizing connected vehicle data, automakers can analyze real-time vehicle performance data to identify opportunities for improvement and reduce carbon emissions. This approach benefits the environment, improves vehicle quality, and reduces engineering work time, making it a win-win solution. Connected vehicle data offers a wealth of information on vehicle performance, such as fuel consumption and carbon emissions.
Technical Paper

Connected Vehicle Data – Prognostics and Monetization Opportunity

2023-10-31
2023-01-1685
In recent years, the automotive industry has seen an exponential increase in the replacement of mechanical components with electronic-controlled components or systems. engine, transmission, brake, exhaust gas recirculation (EGR), lighting, driver-assist technologies, etc. are all monitored and/or controlled electronically. Connected vehicles are increasingly being used by Original Equipment Manufacturers (OEMs) to collect and transmit vehicle data in real-time via the use of various sensors, actuators, and communication technologies. Vehicle telematics devices can collect and transmit data about the vehicle location, speed, fuel efficiency, State Of Charge (SOC), auxiliary battery voltage, emissions, performance, and more. This data is sent over to the cloud via cellular networks, where it can be processed and analyzed to improve their products and services by automotive companies and/or fleet management.
Technical Paper

Development of a 5-Component Diesel Surrogate Chemical Kinetic Mechanism Coupled with a Semi-Detailed Soot Model with Application to Engine Combustion and Emissions Modeling

2023-08-28
2023-24-0030
In the present work, five surrogate components (n-Hexadecane, n-Tetradecane, Heptamethylnonane, Decalin, 1-Methylnaphthalene) are proposed to represent liquid phase of diesel fuel, and another different five surrogate components (n-Decane, n-Heptane, iso-Octane, MCH (methylcyclohexane), Toluene) are proposed to represent vapor phase of diesel fuel. For the vapor phase, a 5-component surrogate chemical kinetic mechanism has been developed and validated. In the mechanism, a recently updated H2/O2/CO/C1 detailed sub-mechanism is adopted for accurately predicting the laminar flame speeds over a wide range of operating conditions, also a recently updated C2-C3 detailed sub-mechanism is used due to its potential benefit on accurate flame propagation simulation. For each of the five diesel vapor surrogate components, a skeletal sub-mechanism, which determines the simulation of ignition delay times, is constructed for species C4-Cn.
Technical Paper

Compact Normalized Description of Vehicle Traction Power for Simple Fuel Consumption Modeling

2023-04-11
2023-01-0350
This is an extension of simple fuel consumption modeling toward HEV. Previous work showed that in urban driving the overhead of running an ICEV engine can use as much fuel as the traction work. The bidirectional character and high efficiency of electric motors enables HEVs to run as a BEV at negative and low traction powers, with no net input from the small battery. The ICE provides the net work at higher traction powers where it is most efficient. Whereas the network reduction is the total negative work times the system round-trip efficiency, the reduction in engine running time requires knowledge of the distribution of traction power levels. The traction power histogram, and the work histogram derived from it, provide the required drive cycle description. The traction power is normalized by vehicle mass, so that the drive trace component becomes invariant, and the road load component nearly invariant to vehicle mass.
Technical Paper

Experimental Characterization of Aluminum Alloys for the Automotive Industry

2023-02-10
2022-36-0031
Several factors stimulate the development of new materials in the industry. From specific physical-chemical characteristics to strategic market advantages, technology companies seek to diversify their raw materials. In the automotive sector, the current trend of electrification in vehicles and the increase of government and market demand for reducing the emission of greenhouse gases makes lighter materials more and more necessary. As electric vehicles use heavy batteries, the vehicle weight is directly related to its power demand and level of autonomy. The same applies to internal combustion vehicles where the vehicle weight directly impacts fuel consumption and emissions. In this context, there is a lot of research on special alloys and composites to replace traditional materials. Aluminum is a good alternative to steel due to its density which is almost five times smaller while that material still has good mechanical properties and has better impact absorption capability.
Technical Paper

Generation of Reactive Chemical Species/Radicals through Pilot Fuel Injection in Negative Valve Overlap and Its Effects on Engine Performances

2022-08-30
2022-01-1002
This study investigated the potential of generating reactive chemical species (including radicals) through pilot fuel injection in negative valve overlap for improving the combustion and emissions performances of spark ignition gasoline engines under low load and low speed operating conditions. Several Ford sub-models were used for simulating the physics and chemistry processes of injecting a small amount of fuel in NVO (negative valve overlap). Effects of different NVO degrees and different pilot injection timings, factors for fuel conversion were simulated and investigated. CO and H2 conversions during NVO, CO and H2 amounts before spark timing were used for comparing different schemes.
Technical Paper

Design of an Additive Manufactured Natural Gas Engine with Thermally Conditioned Active Prechamber

2022-06-14
2022-37-0001
In order to decarbonize and lower the overall emissions of the transport sector, immediate and cost-effective powertrain solutions are needed. Natural gas offers the advantage of a direct reduction of carbon dioxide (CO2) emissions due to its better Carbon to Hydrogen ratio (C/H) compared to common fossil fuels, e.g. gasoline or diesel. Moreover, an optimized engine design suiting the advantages of natural gas in knock resistance and lean mixtures keeping in mind the challenges of power density, efficiency and cold start manoeuvres. In the public funded project MethMag (Methane lean combustion engine) a gasoline fired three-cylinder-engine is redesigned based on this change of requirements and benchmarked against the previous gasoline engine.
Technical Paper

Adaptive Real-Time Energy Management of a Multi-Mode Hybrid Electric Powertrain

2022-03-29
2022-01-0676
Meticulous design of the energy management control algorithm is required to exploit all fuel-saving potentials of a hybrid electric vehicle. Equivalent consumption minimization strategy is a well-known representative of on-line strategies that can give near-optimal solutions without knowing the future driving tasks. In this context, this paper aims to propose an adaptive real-time equivalent consumption minimization strategy for a multi-mode hybrid electric powertrain. With the help of road recognition and vehicle speed prediction techniques, future driving conditions can be predicted over a certain horizon. Based on the predicted power demand, the optimal equivalence factor is calculated in advance by using bisection method and implemented for the upcoming driving period. In such a way, the equivalence factor is updated periodically to achieve charge sustaining operation and optimality.
Technical Paper

Energy Management System for Input-Split Hybrid Electric Vehicle (Si-EVT) with Dynamic Coordinated Control and Mode-Transition Loss

2022-03-29
2022-01-0674
Instantaneous optimization-based energy management systems (EMS) are getting popular since they can yield near-optimal performance in unknown driving situations with minimalistic tuning parameters. However, they often disregard the drivability score of the powertrain as a performance assessment criterion, and this leads to too frequent or even infeasible mode-transitions during the multi-mode operation of a hybrid electric powertrain. Aiming to bring down the mode-transition frequency below a feasible limit, this paper proffers an instantaneous optimization-based EMS, which also accounts for the energy lost during mode-transitions into the cost function along with the electrical and chemical energy losses. The energy lost during a single mode-transition event refers to the summation of change in rotational energy for all the prime-movers, i.e., internal combustion engine and electric machines.
Technical Paper

A Computationally Lightweight Dynamic Programming Formulation for Hybrid Electric Vehicles

2022-03-29
2022-01-0671
Predicting the fuel economy capability of hybrid electric vehicle (HEV) powertrains by solving the related optimal control problem has been available for a few decades. Dynamic programming (DP) is one of the most popular techniques implemented to this end. Current research aims at integrating further powertrain modeling criteria that improve the fidelity level of the optimal HEV powertrain control behavior predicted by DP, thus corroborating the reliability of the fuel economy assessment. Dedicated methodologies need further development to avoid the curse of dimensionality which is typically associated to DP when increasing the number of control and state variables considered. This paper aims at considerably reducing the overall computational effort required by DP for HEVs by removing the state term associated to the battery state-of-charge (SOC).
Journal Article

Fast Air-Path Modeling for Stiff Components

2022-03-29
2022-01-0410
Development of propulsion control systems frequently involves large-scale transient simulations, e.g. Monte Carlo simulations or drive-cycle optimizations, which require fast dynamic plant models. Models of the air-path—for internal combustion engines or fuel cells—can exhibit stiff behavior, though, causing slow numerical simulations due to either using an implicit solver or sampling much faster than the bandwidth of interest to maintain stability. This paper proposes a method to reduce air-path model stiffness by adding an impedance in series with potentially stiff components, e.g. throttles, valves, compressors, and turbines, thereby allowing the use of a fast-explicit solver. An impedance, by electrical analogy, is a frequency-dependent resistance to flow, which is shaped to suppress the high-frequency dynamics causing air-path stiffness, while maintaining model accuracy in the bandwidth of interest.
Journal Article

Unified Power-Based Analysis of Combustion Engine and Battery Electric Vehicle Energy Consumption

2022-03-29
2022-01-0532
The previously developed power-based fuel consumption theory for Internal Combustion Engine Vehicles (ICEV) is extended to Battery Electric Vehicles (BEV). The main difference between the BEV model structure and the ICEV is the bi-directional character of traction motors and batteries. A traction motor model was developed as a bi-linear function of positive and negative traction power. Another difference is that the accessories and cabin heating are powered directly from the battery, and not from the powertrain. The resulting unified model for ICEV and BEV energy consumption has linear terms proportional to positive and negative traction power, accessory power, and overhead, in varying proportions. Compared to the ICEV, the BEV powertrain has a high marginal efficiency and low overhead. As a result, BEV energy consumption data under a wide range of driving conditions are mainly proportional to net traction power, with only a small offset.
Technical Paper

Green Light Optimized Speed Advisory (GLOSA) with Traffic Preview

2022-03-29
2022-01-0152
By utilizing the vehicle to infrastructure communication, the conventional Green Light Optimized Speed Advisory (GLOSA) applications give speed advisory range for drivers to travel to pass at the green light. However, these systems do not consider the traffic between the ego vehicle and the traffic light location, resulting in inaccurate speed advisories. Therefore, the driver needs to intuitively adjust the vehicle's speed to pass at the green light and avoid traffic in these scenarios. Furthermore, inaccurate speed advisories may result in unnecessary acceleration and deceleration, resulting in poor fuel efficiency and comfort. To address these shortcomings of conventional GLOSA, in this study, we proposed the utilization of collaborative perception messages shared by smart infrastructures to create an enhanced speed advisory for the connected vehicle drivers and automated vehicles.
Journal Article

Model-Based Thermal Control Strategy for Electrified Vehicles

2022-03-29
2022-01-0203
Stringent requirements for high fuel economy and energy efficiency mandate using increasingly complex vehicle thermal systems in most types of electrified vehicles (xEVs). Enabling the maximum benefits of such complex thermal systems under the full envelope of their operating modes demands designing complex thermal control systems. This is becoming one of the most challenging problems for electrified vehicles. Typically, the thermal systems of such vehicles have several modes of operation, constituting nonlinear multiple-input/multiple-output (MIMO) dynamic systems that cannot be efficiently controlled using classical or rule based strategies. This paper covers the different steps towards the design of a model-based control (MBC) strategy that can improve the overall performance of xEV thermal control systems. To achieve the above objective, the latter MBC strategy is applied to control cooling of the cabin and high voltage battery.
Technical Paper

Development of a PN Surrogate Model Based on Mixture Quality in a GDI Engine

2021-09-05
2021-24-0013
A novel surrogate model is presented, which predicts the engine-out Particle Number (PN) emissions of a light-duty, spray-guided, turbo-charged, GDI engine. The model is developed through extensive CFD analysis, carried out using the Siemens Simcenter STAR-CD, and considers a range of part-load operating conditions and single-variable sweeps where control parameters such as start of injection and injection pressure are varied in isolation. The work is attached to the Ford-led APC6 DYNAMO project, which aims to improve efficiency and reduce harmful emissions from the next generation of gasoline engines. The CFD work focused on the air exchange, fuel spray and mixture preparation stages of the engine cycle. A combined Rosin-Rammler and Reitz-Diwakar model, calibrated over a wide range of injection pressure, is used to model fuel atomization and secondary droplets break-up.
Technical Paper

FCA US LLC-Magnesium Closures Development

2021-04-06
2021-01-0278
This paper will focus on automotive development highlights of FCA US LLC magnesium intensive closures components. Deploying lightweight materials is one of many key strategies that has been implemented to reduce vehicle mass and improve overall fuel economy while maintaining rigorous functional objective performance. This paper will outline some basic design and manufacturing considerations for magnesium closures. The development of the 2017 Chrysler Pacifica liftgate and 2018 Jeep® Wrangler swing gate along with the two generations of magnesium spare tire brackets will be the focus.
Technical Paper

Cast Magnesium Subframe Development-Corrosion Mitigation Strategy and Testing

2021-04-06
2021-01-0279
A cast magnesium AE44 subframe was designed and manufactured for a C Class sedan to reduce weight and improve vehicle fuel economy. Corrosion mitigation strategies were developed to reduce the likelihood of galvanic corrosion. Both a proving ground vehicle corrosion test and a laboratory component corrosion test were conducted. The vehicle test result demonstrated that the corrosion mitigation strategies were effective. They also provided lessons learned on clearance between magnesium and steel components and options to improve the subframe’s corrosion resistance. The magnesium subframe achieved 5 kg (32%) weight reduction from the equivalent steel subframe and met all the required structural performance targets.
X