Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Boundary Lubrication of Biofuels and Similar Molecules

2017-06-29
2017-01-9376
The cluster of excellence “Tailor-Made Fuels from Biomass” (TMFB) at RWTH Aachen University seeks to identify and investigate new potential biofuels and their production routes. To ensure a safe handling in common-rail systems the lubricity of future biofuels is part of the investigations. To further deepen the understanding of the behaviour of such fluids in the regime of boundary lubrication a group of twelve potential biofuels and systematically derived fluids was investigated by a modified version of the standardised High Frequency Reciprocating Rig test procedure for Diesel lubricity. Insufficient lubricity is observed for most biofuels whereas linear molecules with polar head groups provide good or very good lubrication. For all studied groups longer molecules provide better lubricities. The position of the functional group significantly influences the overall lubricity and impact of the carbon chain length.
Technical Paper

Efficient Recuperation of Kinetic Energy - Hybrid Versus Hydrostatic Approach

2007-10-30
2007-01-4153
This paper analyzes different concepts for storage and recuperation of kinetic energy during braking operation in a forklift truck application. The reduction of fuel consumption is one of the challenges for on and off-road vehicles. Starting from a conventional hydrostatic transmission, secondary hydraulic control and a hybrid solution are investigated. Wasting kinetic energy during braking operation of mobile working machines in cyclic applications and converting it into heat energy instead of reusable energy is a very inefficient principle still used in industry. Rising energy costs, enhanced government guidelines and increased environmental awareness require more efficient drive concepts for the next decades. Recuperation of kinetic energy during braking operation provides the opportunity of increasing the efficiency of mobile working machines. Efficient recuperation of kinetic energy requires a proper application and a low-loss system design.
X