Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

New Equivalent Static Load (ESL) Creation Procedure for Complete Vehicle

2024-06-12
2024-01-2944
By analyzing the dynamic distortion in all body closure openings in a complete vehicle, a better understanding of the body characteristics can be achieved compared to traditional static load cases such as static torsional body stiffness. This is particularly relevant for non-traditional vehicle layouts and electric vehicle architectures. The body response is measured with the so-called Multi Stethoscope (MSS) when driving a vehicle on a rough pavé road (cobble stone). The MSS is measuring the distortion in each opening in two diagonals. During the virtual development, the distortion is described by the relative displacement in diagonal direction in time domain using a modal transient analysis. The results are shown as Opening Distortion Fingerprint ODF and used as assessment criteria within Solidity and Perceived Quality. By applying the Principal Component Analysis (PCA) on the time history of the distortion, a Dominant Distortion Pattern (DDP) can be identified.
Technical Paper

Application of a CFD Methodology for the Design of PEM Fuel Cell at the Channel Scale

2024-04-09
2024-01-2186
Polymer electrolyte membrane (PEM) fuel cells will play a crucial role in the decarbonization of the transport sector, in particular for heavy duty applications. However, performance and durability of PEMFC stacks is still a concern especially when operated under high power density conditions, as required in order to improve the compactness and to reduce the cost of the system. In this context, the optimization of the geometry of hydrogen and air distributors represents a key factor to improve the distribution of the reactants on the active surface, in order to guarantee a proper water management and avoiding membrane dehydration.
Technical Paper

Torque Converter Modeling for Torque Control of Hybrid Electric Powertrains

2024-04-09
2024-01-2780
This paper introduces a novel approach to modeling Torque Converter (TC) in conventional and hybrid vehicles, aiming to enhance torque delivery accuracy and efficiency. Traditionally, the TC is modelled by estimating impeller and turbine torque using the classical Kotwicki’s set of equations for torque multiplication and coupling regions or a generic lookup table based on dynamometer (dyno) data in an electronic control unit (ECU) which can be calibration intensive, and it is susceptible to inaccurate estimations of impeller and turbine torque due to engine torque accuracy, transmission oil temperature, hardware variation, etc. In our proposed method, we leverage an understanding of the TC inertia – torque dynamics and the knowledge of the polynomial relationship between slip speed and fluid path torque. We establish a mathematical model to represent the polynomial relationship between turbine torque and slip speed.
Technical Paper

Effect of Surface Roughness on Tribological and NVH Behaviour of Brake System

2024-04-09
2024-01-2732
Brake assemblies are an essential part of any vehicle, and their effective functioning is critical for the safety and comfort of passengers. The surface roughness of brake components plays a vital role in figuring out their tribological and NVH (Noise, Vibration, and Harshness) behavior. It is essential to understand the impact of surface roughness on brake performance to ensure efficient braking and it has been a topic of interest in the automotive industry. In this study, the influence of surface roughness on the wear, and noise characteristics of a brake assembly has been investigated. The study also provides insights into the relationship between surface roughness, frictional behavior, and NVH performance, which can be used to improve the design and manufacturing of brake assemblies. The brake assembly includes of a disc, caliper, and brake pads, which work together to convert the kinetic energy of the vehicle into heat energy, has been considered in this study.
Technical Paper

Post-Oxidation Phenomena as a Thermal Management Strategy for Automotive After-Treatment Systems: Assessment by Means of 3D-CFD Virtual Development

2024-04-09
2024-01-2629
The target of the upcoming automotive emission regulations is to promote a fast transition to near-zero emission vehicles. As such, the range of ambient and operating conditions tested in the homologation cycles is broadening. In this context, the proposed work aims to thoroughly investigate the potential of post-oxidation phenomena in reducing the light-off time of a conventional three-way catalyst. The study is carried out on a turbocharged four-cylinder gasoline engine by means of experimental and numerical activities. Post oxidation is achieved through the oxidation of unburned fuel in the exhaust line, exploiting a rich combustion and a secondary air injection dedicated strategy. The CFD methodology consists of two different approaches: the former relies on a full-engine mesh, the latter on a detailed analysis of the chemical reactions occurring in the exhaust line.
Technical Paper

Proactive Battery Energy Management Using Navigation Information

2024-04-09
2024-01-2142
In this paper, a control strategy for state of charge (SOC) allocation using navigation data for Hybrid Electric Vehicle (HEV) propulsion systems is proposed. This algorithm dynamically defines and adjusts a SOC target as a function of distance travelled on-line, thereby enabling proactive management of the energy store in the battery. The proposed approach incorporates variances in road resistance and adheres to geolocation constraints, including ultra-low emission zones (uLEZ). The anticipated advantages are particularly pronounced during scenarios involving extensive medium-to-long journeys characterized by abrupt topological changes or the necessity for exclusive electric vehicle (EV) mode operation. This novel solution stands to significantly enhance both drivability and fuel economy outcomes.
Technical Paper

Development of Time-Temperature Analysis Algorithm for Estimation of Lithium-Ion Battery Useful Life

2024-04-09
2024-01-2191
Due to the recent progress in electrification, lithium-ion batteries have been widely used for electric and hybrid vehicles. Lithium-ion batteries exhibit high energy density and high-power density which are critical for vehicle development with high driving range enhanced performance. However, high battery temperature can negatively impact the battery life, performance, and energy delivery. In this paper, we developed and applied an analytical algorithm to estimate battery life-based vehicle level testing. A set of vehicle level tests were selected to represent customer duty cycles. Thermal degradation models are applied to estimate battery capacity loss during driving and park conditions. Due to the sensitivity of Lithium-Ion batteries to heat, the effect of high ambient temperatures throughout the year is considered as well. The analysis provides an estimate of the capacity loss due to calendar and cyclic effects throughout the battery life.
Technical Paper

Numerical and Experimental Investigation on Passive Prechamber Configurations Able to Operate at Low Engine Speed and Load

2023-08-28
2023-24-0031
Turbulent Jet Ignition (TJI) represents one of the most effective solution to improve engine efficiency and to reduce fuel consumption and pollutants emission. Even if active prechambers allow a precise control of the air-fuel ratio close to the spark plug and the ignition of ultra-lean mixtures in the main chamber, passive prechambers represent a more attractive solution especially for passenger cars thanks to their simpler and cheaper configuration, which is easier to integrate into existing engines. The main challenge of passive prechambers is to find a geometry that allows to use TJI in the whole engine map, especially in the low load/speed region, without the use of a second sparkplug in the main chamber. To this end, this works reports a CFD study coupled with an experimental investigation to overcome this limitation.
Technical Paper

Automated Kinetic Mechanism Evaluation for e-Fuels Using SciExpeM: The Case of Oxymethylene Ethers

2023-08-28
2023-24-0092
In the rapidly changing scenario of the energy transition, data-driven tools for kinetic mechanism development and testing can greatly support the evaluation of the combustion properties of new potential e-fuels. Despite the effectiveness of kinetic mechanism generation and optimization procedures and the increased availability of experimental data, integrated methodologies combining data analysis, kinetic simulations, chemical lumping, and kinetic mechanism optimization are still lacking. This paper presents an integrated workflow that combines recently developed automated tools for kinetic mechanism development and testing, from data collection to kinetic model reduction and optimization. The proposed methodology is applied to build a consistent, efficient, and well-performing kinetic mechanism for the combustion of oxymethylene ethers (OMEs), which are promising synthetic e-fuels for transportation.
Technical Paper

Analytical and Experimental Handling Performance of Ultra-Efficient Lightweight Vehicles

2023-08-28
2023-24-0135
The rising environmental awareness has led to a growing interest in electric and lightweight vehicles. Four-wheeled Ultra-Efficient Lightweight Vehicles (UELVs) have the potential to improve the quality of urban life, reduce environmental impact and make efficient use of land. However, the safety of these vehicles in terms of dynamic behaviour needs to be better understood. This paper aims to provide a quantitative assessment of the handling behaviour of UELVs. An analytical single-track model and a numerical simulation by VI-CarRealTime are analysed to evaluate the dynamic performance of a UELV compared to a city car. This analysis shows that the lightweight vehicle has a higher readiness (i.e. lower reaction time to yaw rate) for step steering and lower steering effort (i.e. higher steady-state value). Experimental analysis through real-time driving sessions on the Dynamic Driving Simulator assesses vehicle responses and subjective perception for different manoeuvres.
Technical Paper

Towards H2 High-Performance IC Engines: Strategies for Control and Abatement of Pollutant Emissions

2023-08-28
2023-24-0108
In future decarbonized scenarios, hydrogen is widely considered as one of the best alternative fuels for internal combustion engines, allowing to achieve zero CO2 emissions at the tailpipe. However, NOx emissions represent the predominant pollutants and their production has to be controlled. In this work different strategies for the control and abatement of pollutant emissions on a H2-fueled high-performance V8 twin turbo 3.9L IC engine are tested. The characterization of pollutant production on a single-cylinder configuration is carried out by means of the 1D code Gasdyn, considering lean and homogeneous conditions. The NOx are extremely low in lean conditions with respect to the emissions legislation limits, while the maximum mass flow rate remains below the turbocharger technical constraint limit at λ=1 only.
Technical Paper

Investigation of the Influence of Aero-Thermal Non-equilibrium Conditions of an SLD Cloud on Airfoil Icing

2023-06-15
2023-01-1406
This study examines the impact of slip in aero-thermal conditions of supercooled large droplets (SLD) produced in an Icing Wind Tunnel (IWT) on the ice accretion characteristics. The study identifies potential biases in the SLD model development based on IWT data and numerical predictions that assume the SLD to be in aerothermal equilibrium with the IWT airflow. To obtain realistic temperature and velocity data for each droplet size class in the test section of the Braunschweig Icing Wind Tunnel (BIWT), a Lagrangian droplet tracking solver was used within a Monte Carlo framework. Results showed that SLDs experience considerable slips in velocity and temperature due to their higher inertia and short residence time in the Braunschweig IWT. Large droplets were found to be warmer and slower than the flow in the test section, with larger droplets experiencing larger aerothermal slips.
Technical Paper

Extension and Validation of a Constant Equivalence Ratio Multi-Zone Approach to DME Combustion in Vessels and CI Engines

2023-04-11
2023-01-0193
This work has the objective to present the extension of a novel quasi-dimensional model, developed to simulate the combustion process in diesel Compression Ignition (CI) engines, to describe this process when Dimethyl ether (DME) is used as fuel. DME is a promising fuel in heavy-duty CI engines application thanks to its high Cetane Number (CN), volatility, high reactivity, almost smokeless combustion, lower CO2 emission and the possibility to be produced with renewable energy sources. In this paper, a brief description of the thermodynamic model will be presented, with particular attention to the implementation of the Tabulated Kinetic Ignition (TKI) model, and how the various models interact to simulate the combustion process. The model has been validated against experimental data derived from constant-volume DME combustion, in this case the most important parameters analyzed and compared were the Ignition Delay (ID) and Flame Lift Off Length (FLOL).
Technical Paper

Optimization of Aluminum Sleeve Design for the tow eye Durability Using DFSS Approach

2023-04-11
2023-01-0092
The automotive industry is moving towards larger SUVs and also electrification is a need to meet the carbon neutrality target. As a result, we see an increase in overall gross vehicle weight (GVW), with the additional weight coming from the HV battery pack, electric powertrain, and other electrical systems. Tow-eye is an essential component that is provided with every vehicle to use for towing during an emergency vehicle breakdown. The tow-eye is usually connected to the retainer/sleeve available in the bumper system and towed using the recovery vehicle or other car with towing provision. Therefore, the tow-eye should meet the functional targets under standard operating conditions. This study is mainly for cars with bumper and tow-eye sleeves made of aluminum which is used in the most recent development of vehicles for weight-saving opportunities. Tow-eye systems in aluminum bumpers are designed to avoid any bending or buckling of the sleeve during towing for whatever the GVW loads.
Technical Paper

Characterization of Vertical Dynamics of a Multi-Purpose Tractor with Static and Dynamic Experimental Tests

2023-04-11
2023-01-0177
Multi-purpose agricultural tractors are vehicles that are usually used in rough paths and on off-road situations characterized by strong slope variations. The main feature of this kind of vehicles is the stability in working conditions to avoid overturning while it is on duty. This characteristic is given by the interaction between the suspension system and the vehicle frame. Due to the limited size of this kind of vehicle, the stability feature could be given by chassis deformation or using a two-piece frame connected by a spherical joint. This paper presents the validation of a numerical lumped-parameters model able to reproduce the vertical dynamics of a multi-purpose tractor featured by a yielding chassis. The unknown model parameters have been estimated firstly with static tests to study the vertical tire and suspension stiffnesses. The dynamic tests using a four-post-test rig have been performed to tune the unknown dynamic parameters.
Technical Paper

Vehicle Path-Tracking Control with Dual-Motor SBW System

2023-04-11
2023-01-0692
Improvement of vehicle path-tracking performance not only affects the vehicle driving safety and comfort but is also essential for autonomous driving technology. The current research focuses on vehicle path-tracking control study and application of dual-motor SBW system. The preview driver model is developed by considering the lateral and yaw tracking. MPC (model predictive control) and LQR (linear quadratic regulator) path following controllers are developed to compare the tracking control performance. A steer-by-wire (SBW) system of dual-motor configuration is designed with permanent magnet synchronous motor (PMSM) control scheme. Finally, the proposed control methods are verified with different driving cases, which shows that the system can effectively achieve small tracking errors in the simulation, and also can be applied in the future autonomous driving or advanced driver assistance system to maintain the lateral and yaw errors within a safe range during path-tracking.
Technical Paper

Transient Electrochemical Modeling and Performance Investigation Under Different Driving Conditions for 144Ah Li-ion Cell with Two Jelly Rolls

2023-04-11
2023-01-0513
Recently, the automotive industry has experienced rapid growth in powertrain electrification, with more and more battery electric vehicles (BEV) and hybrid electric vehicles being launched. Lithium-ion batteries play an important role due to their high energy capacity and power density, however they experience high heat generation in their operation, and if not properly cooled it can lead to serious safety issues as well as lower performance and durability. In that way, good prediction of a battery behavior is crucial for successful design and management. This paper presents a 1D electrochemical model development of a 144 Ah prismatic rolled cell using the GT-Autolion software with a pseudo 2D approach. The model correlation is done at cell level comparing model results and test data of cell open circuit voltage at different temperatures and voltage and temperature profile under different C-rates and ambient temperatures.
Technical Paper

Mathematical formulation and Analysis of Brake Judder

2023-04-11
2023-01-0148
The Brake judder is a low-level vibration caused due to Disc Thickness Variation (DTV), Temperature, Brake Torque Variation (BTV), thermal degradation, hotspot etc. which is a major concern for the past decades in automobile manufacturers. To predict the judder performance, the modelling methods are proposed in terms of frequency and BTV respectively. In this study, a mathematical model is constructed by considering full brake assembly, tie rod, coupling rod, steering column, and steering wheel as a spring mass system for identifying judder frequency. Simulation is also performed to predict the occurrence of brake judder and those results are validated with theoretical results. Similarly, for calculating BTV a separate methodology is proposed in CAE and validated with experimental and theoretical results.
Technical Paper

Accurate Automotive Spinning Wheel Predictions Via Deformed Treaded Tire on a Full Vehicle Compared to Full Width Moving Belt Wind Tunnel Results

2023-04-11
2023-01-0843
As the automotive industry is quickly changing towards electric vehicles, we can highlight the importance of aerodynamics and its critical role in reaching extended battery ranges for electric cars. With all new smooth underbodies, a lot of attention has turned into the effects of rim designs and tires brands and the management of these tire wakes with the vehicle. Tires are one of the most challenging areas for aerodynamic drag prediction due to its unsteady behavior and rubber deformation. With the simulation technologies evolving fast regarding modeling spinning tires for aerodynamics, this paper takes the prior work and data completed by the authors and investigates the impact on the flow fields and aerodynamic forces using the most recent developments of an Immerse Boundary Method (IBM). IBM allows us to mimic realistically a rotating and deformed tire using Lattice Boltzmann methods.
Technical Paper

Assessment of Actuator Line and Rotor Disk as Alternative Approaches for the Numerical Simulation of Rotating Wheels

2023-04-11
2023-01-0844
Wheel and wheelhouses contribute up to 20-30% of the aerodynamic drag of passenger cars. Simulating the flow field around wheels is challenging due to the complexity of the flow structures generated by tires and rims, wheel rotation, tire deformation and contact with the ground. High accuracy is usually obtained with transient simulations that treat rim rotation with the Sliding Mesh (SM) approach, which is also computationally expensive. Previous studies have confirmed that the application of a tangential velocity component to the rim surface is unphysical for open rims, while a Moving Reference Frame (MRF) is lacking accuracy and the averaged results depend on the initial spokes position. These methods do not consider the dynamic nature of the problem. This work proposes the use of the Actuator Line (AL) and Rotor Disk (RD) approaches as alternatives for simulating open rims with much lower computational cost.
X