Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Journal Article

The Contribution of Engine Mechanics to Improved Fuel Economy

2014-04-01
2014-01-1663
Measures for reducing engine friction within the powertrain are assessed in this paper. The included measures work in combination with several new technologies such as new combustion technologies, downsizing and alternative fuels. The friction reduction measures are discussed for a typical gasoline vehicle. If powertrain friction could be eliminated completely, a reduction of 15% in CO2 emissions could be achieved. In order to comply with more demanding CO2 legislations, new technologies have to be considered to meet these targets. The additional cost for friction reduction measures are often lower than those of other new technologies. Therefore, these measures are worth following up in detail.
Journal Article

Integration of Engine Start/Stop Systems with Emphasis on NVH and Launch Behavior

2013-05-13
2013-01-1899
Automatic engine start/stop systems are becoming more prevalent and increasing market share of these systems is predicted due to demands on improving fuel efficiency of vehicles. Integration of an engine start/stop system into a “conventional” drivetrain with internal combustion engine and 12V board system is a relatively cost effective measure to reduce fuel consumption. Comfort and NVH aspects will continue to play an important role for customer acceptance of these systems. Possible delay during vehicle launch due to the engine re-start is not only a safety relevant issue but a hesitating launch feel characteristic will result in reduced customer acceptance of these systems. The engine stop and re-start behavior should be imperceptible to the driver from both a tactile and acoustic standpoint. The lack of masking effects of the engine during the engine stop phases can cause other “unwanted” noise to become noticeable or more prominent.
Technical Paper

Increasing Efficiency in Gasoline Powertrains with a Two-Stage Variable Compression Ratio (VCR) System

2013-04-08
2013-01-0288
Downsizing in combination with turbocharging currently represents the main technology trend for meeting CO2 emissions with gasoline engines. Besides the well-known advantages of downsizing the compression ratio has to be reduced in order to mitigate knock at higher engine loads along with increased turbocharging demand to compensate for the reduction in power. Another disadvantage occurs at part load with increasing boost pressure levels causing the part load efficiencies to deteriorate. The application of a variable compression ratio (VCR) system can help to mitigate these disadvantages. The 2-stage VCR system with variable kinetic lengths entails variable powertrain components which can be used instead of the conventional components and thus only require minor modifications for existing engine architectures. The presented variable length connecting rod system has been continuously developed over the past years.
Technical Paper

Developing Drivetrain Robustness for Small Engine Testing

2013-04-08
2013-01-0400
The increased demand in fuel economy and the reduction of CO₂ emissions results in continued efforts to downsize engines. The downsizing efforts result in engines with lower displacement as well as lower number of cylinders. In addition to cylinder and displacement downsizing the development community embarks on continued efforts toward down-speeding. The combination of the aforementioned factors results in engines which can have high levels of torsional vibrations. Such behavior can have detrimental effects on the drivetrain particularly during the development phase of these. Driveshafts, couplings, and dynamometers are exposed to these torsional forces and depending on their frequency costly damages in these components can occur. To account for these effects, FEV employs a multi-body-system modeling approach through which base engine information is used to determine optimized drivetrain setups. All mechanical elements in the setup are analyzed based on their torsional behavior.
Technical Paper

A Low NVH Range-Extender Application with a Small V-2 Engine - Based on a New Vibration Compensation System

2012-10-23
2012-32-0081
The interest in electric propulsion of vehicles has increased in recent years and is being discussed extensively by experts as well as the public. Up to now the driving range and the utilization of pure electric vehicles are still limited in comparison to conventional vehicles due to the limited capacity and the long charging times of today's batteries. This is a challenge to customer acceptance of a pure electric vehicle, even for a city car application. A Range Extender concept could achieve the desired customer acceptance, but should not impact the “electric driving” experience, and should not cause further significant increases in the manufacturing and purchasing cost. The V2 engine concept presented in this paper is particularly suited to a low cost, modular vehicle concept. Advantages regarding packaging can be realized with the use of two generators in combination with the V2 engine.
Technical Paper

Transient Drive Cycle Modeling of Supercharged Powertrains for Medium and Heavy Duty On-Highway Diesel Applications

2012-09-24
2012-01-1962
The problem with traditional drive cycle fuel economy analysis is that kinematic (backward looking) models do not account for transient differences in charge air handling systems. Therefore, dynamic (forward looking) 1D performance simulation models were created to predict drive cycle fuel economy which encompass all the transient elements of fully detailed engine and vehicle models. The transient-capable technology of primary interest was mechanical supercharging which has the benefit of improved boost response and "time to torque." The benefits of a supercharger clutch have also been evaluated. The current US class 6-8 commercial vehicle market exclusively uses turbocharged diesel engines. Three vehicles and baseline powertrains were selected based on a high-level review of vehicle sales and the used truck marketplace. Fuel economy over drive cycles was the principal output of the simulation work. All powertrains are based on EPA 2010 emission regulations.
Technical Paper

Road Map for Addressing Future On-Board-Diagnostic Challenges in Light and Heavy-Duty Diesel Engines

2012-04-16
2012-01-0895
Since the 1990's regulatory requirements for On-Board-Diagnostics (OBD) have continuously evolved with an increasing application of advanced electronics and control systems that have been adopted for automotive applications. The current and future demands on emissions and performance requirements are pushing the envelope with respect to management of complex control software strategies, hardware components and their interactions. This further challenges the implementation of OBD. In order to build a robust monitor for a complex system which has minimum risk of false detection, a thorough understanding of both system and components is required. In this paper, several methods will be presented that can be utilized to achieve a successful and robust diagnostic system implementation. Implementation begins with a discussion of the major challenges to achieve consistent performance in the base system control.
Technical Paper

Virtual Testing and Simulation Environment [Micro-HiL] for Engine and Aftertreatment Calibration and Development -Part 2

2012-04-16
2012-01-0928
The growing complexity of powertrain control strategies, software, and hardware is proving to be a significant challenge to the engineering community with regard to managing effective optimization to meet the desired performance. With an increased emphasis on shorter development time and the use of additional sensors and actuators becoming common, the increased dependence on physical models and use of complex interdependent control systems demands a thorough system understanding. This also encourages the use of process improvement tools to assist in an effective engineering process. In this paper, such a tool is discussed in its second phase of development. The Micro-HiL system will be discussed over a wide scope that focuses on the interests of the calibration and development community. The purpose of this paper is to provide an update on the Phase 2 activity of Micro-HiL development; Phase 1 was discussed in-depth at the 2011 SAE World Congress [2011-01-0703].
Technical Paper

Systematic Approach to Analyze and Characterize Pre-ignition Events in Turbocharged Direct-injected Gasoline Engines

2011-04-12
2011-01-0343
Downsized direct-injected boosted gasoline engines with high specific power and torque output are leading the way to reduce fuel consumption in passenger car vehicles while maintaining the same performance when compared to applications with larger naturally aspirated engines. These downsized engines reach brake mean effective pressure levels which are in excess of 20 bar. When targeting high output levels at low engine speeds, undesired combustion events called pre-ignition can occur. These pre-ignition events are typically accompanied by very high cylinder peak pressures which can lead to severe damage if the engine is not designed to withstand these high cylinder pressures. Although these pre-ignition events have been reported by numerous other authors, it seems that their occurrence is rather erratic which makes it difficult to investigate or reliably exclude them.
Technical Paper

A Multi-Cylinder Airflow & Residual Gas Estimation Tool Applied to a Vehicle Demonstrator

2010-04-12
2010-01-0169
In a gasoline engine, the cycle-by-cycle fresh trapped charge, and corresponding unswept residual gas fraction (RGF) are critical parameters of interest for maintaining the desired air-fuel ratio (AFR). Accurate fueling is a key precursor to improved engine fuel economy, and reduced engine out emissions. Asymmetric flow paths to cylinders in certain engines can cause differences in the gas exchange process, which in turn cause imbalances in trapped fresh charge and RGF. Variable cam timing (VCT) can make the gas exchange process even more complex. Due to the reasons stated above, simplified models can result in significant estimation errors for fresh trapped charge and RGF if they are not gas dynamics-based or detailed enough to handle features such as variable valve timing, duration, or lift. In this paper, a new air flow and RGF measurement tool is introduced.
Journal Article

Biodiesel Effects on U.S. Light-Duty Tier 2 Engine and Emission Control Systems - Part 2

2009-04-20
2009-01-0281
Raising interest in Diesel powered passenger cars in the United States in combination with the government mandated policy to reduce dependency of foreign oil, leads to the desire of operating Diesel vehicles with Biodiesel fuel blends. There is only limited information related to the impact of Biodiesel fuels on the performance of advanced emission control systems. In this project the implementation of a NOx storage and a SCR emission control system and the development for optimal performance are evaluated. The main focus remains on the discussion of the differences between the fuels which is done for the development as well as useful life aged components. From emission control standpoint only marginal effects could be observed as a result of the Biodiesel operation. The NOx storage catalyst results showed lower tailpipe emissions which were attributed to the lower exhaust temperature profile during the test cycle. The SCR catalyst tailpipe results were fuel neutral.
Technical Paper

Gas Exchange Optimization and the Impact on Emission Reduction for HSDI Diesel Engines

2009-04-20
2009-01-0653
The main tasks for all future powertrain developments are: regulated emissions, CO2-values, comfort, good drivability, high reliability and affordable costs. One widely discussed approach for fuel consumption improvement within passenger car applications, is to incorporate the downsizing effect. To attain constant engine performance an increase of boost pressure and/or rated speed is mandatory. In both cases, the mass flow rate through the intake and exhaust ports and valves will rise. In this context, the impact of the port layout on the system has to be reassessed. In this paper, the impact of the port layout on a modern diesel combustion system will be discussed and a promising concept shall be described in detail. The investigations shown include flow measurements, PIV measurements of intake flow, CFD simulations of the flow field during intake and results from the thermodynamic test bench. One of the important topics is to prove the impact of the flow quality on the combustion.
Journal Article

Effects of Biodiesel Operation on Light-Duty Tier 2 Engine and Emission Control Systems

2008-04-14
2008-01-0080
Due to raising interest in diesel powered passenger cars in the U.S. in combination with a desire to reduce dependency on imported petroleum, there has been increased attention to the operation of diesel vehicles on fuels blended with biodiesel. One of several factors to be considered when operating a vehicle on biodiesel blends is understanding the impact and performance of the fuel on the emission control system. This paper documents the impact of the biodiesel blends on engine-out emissions as well as the overall system performance in terms of emission control system calibration and the overall system efficiency. The testing platform is a light-duty HSDI diesel engine with a Euro 4 base calibration in a 1700 kg sedan vehicle. It employs 2nd generation common-rail injection system with peak pressure of 1600 bar as well as cooled high-pressure EGR. The study includes 3 different fuels (U.S.
X