Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Incorporating Weld Residual Stress Effects into Fatigue Life Predictions using the Battelle Structural Stress Method

2018-04-03
2018-01-1212
Welding induced residual stresses are an important factor to consider when evaluating fatigue design of welded automotive parts. Fortunately, design engineers have various residual stress mitigation technologies at their disposal for improving the fatigue performance of these parts. For this purpose, it is essential to understand the relationship between the residual stresses and fatigue performance quantitatively as well as qualitatively. It has been widely accepted that tensile residual stresses in welded structures are as high as the material yield strength level. Therefore, the fatigue strength of welded joints is governed predominantly by the applied stress range, regardless of the load ratio. However, in stress relieved components the tensile residual stress level is not as high, and the weld fatigue behavior is more influenced by the load ratio.
Technical Paper

Application of Weld Fatigue Evaluation Procedure for Considering Multi-Axial Stress States Using the Battelle Structural Stress Method

2017-03-28
2017-01-0338
Even under uniaxial loading, seemingly simple welded joint types can develop multi-axial stress states, which must be considered when evaluating both the fatigue strength and failure location. Based on the investigation of fatigue behavior for the multi-axial stress state, a procedure for fatigue behavior of welded joints with multi-axial stress states was proposed using an effective equivalent structural stress range parameter combined normal and in-plane shear equivalent structural stress ranges and the master S-N curve approach. In automotive structures, fatigue failure is often observed at weld end, which often show a complex stress state. Due to simplified weld end representation having a sharp right-angled weld corner, the fatigue failure prediction at the weld end tends to be overly conservative due to the excessive stress concentration at the right-angled weld termination.
Technical Paper

Fatigue Evaluation Procedure Development for Self-Piercing Riveted Joints Using the Battelle Structural Stress Method

2016-04-05
2016-01-0384
Lightweight, optimized vehicle designs are paramount in helping the automotive industry meet reduced emissions standards. Self-piercing rivets are a promising new technology that may play a role in optimizing vehicle designs, due to their superior fatigue resistance compared with spot welds and ability to join dissimilar materials. This paper presents a procedure for applying the mesh-insensitive Battelle Structural Stress Method to self-piercing riveted joints for fatigue life prediction. Additionally, this paper also examines the development of an interim fatigue design master S-N curve for self-piercing rivets. The interim fatigue design master S-N curve accounts for factors such as various combinations of similar and dissimilar metal sheets, various sheet thicknesses, stacking sequence, and load ratios. A large amount of published data was collapsed into a single interim S-N curve with reasonable data scattering.
Technical Paper

Fatigue Evaluation Procedure Development for Aluminum Alloy Spot Welds Using the Battelle Structural Stress Method

2015-04-14
2015-01-0545
As the automotive industry seeks to remove weight from vehicle chasses to meet increased fuel economy standards, it is increasingly turning to composites and aluminum. In spite of increasing demands for quality aluminum alloy spot welds that enable more fuel efficient automobiles, fatigue evaluation procedures for such welds are not well-established. This article discusses the results of an evaluation Battelle performed of the fatigue characteristics of aluminum alloy spot welds based on experimental data and observations from the literature. In comparison with spot welds in steel alloys, aluminum alloy spot welds exhibit several significant differences including a different hardness distribution at and around the weld, different fatigue failure modes, and more. The effectiveness and applicability of the Battelle structural stress-based simplified procedure for modeling and simulating automotive spot welds has previously been demonstrated by Battelle investigations.
Journal Article

Development of Friction Stir Weld Fatigue Evaluation Procedure Using Battelle Structural Stress Method

2014-04-01
2014-01-0909
Weld fatigue evaluation using the mesh-insensitive Battelle structural stress method has been applied to fusion welds, resistance spot welds and non-welded components. The effectiveness of the Battelle structural stress procedure has been demonstrated in a series of earlier publications for welded structures with different joint types, plate thicknesses, and loading modes. In this paper, a weld fatigue evaluation procedure using the Battelle structural stress method is proposed for friction stir welds currently being used in the automotive and aerospace industries. The applicability of the Battelle structural stress procedure is demonstrated by comparing fatigue life predictions for friction stir welded specimens to well-documented test data from the literature. Different specimen types, plate thicknesses and loading ratios were analyzed for several aluminum alloys.
Journal Article

Fatigue Evaluation of Notched Plate Specimens by the Battelle Structural Stress Method

2013-04-08
2013-01-1011
In this paper, the applicability of the finite element-based, mesh insensitive Battelle structural stress method is demonstrated for fatigue life predictions of notched specimens (non-welded) with different specimen types, and notch shapes. Well-documented notch fatigue data were analyzed using the Battelle structural stress fatigue evaluation procedure, including notched plate fatigue data for steel and aluminum alloys. The effectiveness of the Battelle structural stress procedure has been demonstrated in a series of earlier publications for welded structures with different joint types, plate thicknesses, and loading modes. Here, a similar Battelle structural stress procedure suitable for finite element modeling and service life simulations is proposed for structures with notches. Unlike weld fatigue data, the crack propagation portion of the fatigue life associated with a notch does not always dominant the total number of cycles to failure.
Journal Article

Quantitative Fuel-Air-Mixing Measurements in Diesel-Like Sprays Emanating from Convergent and Divergent Multi-Layer Nozzles

2012-04-16
2012-01-0464
It is the objective of this work to characterize mixture formation in the sprays emanating from Multi-Layer (ML) nozzles under approximately engine-like conditions by quantitative, spatially, and temporally resolved fuel-air ratio and temperature measurements. ML nozzles are cluster nozzles which have more than one circle of orifices. They were introduced previously, in order to overcome the limitations of conventional nozzles. In particular, the ML design yields the potential of variable spray interaction, so that mixture formation could be controlled according to the operating condition. In general, it was also a primary aim of the cluster-nozzle concepts to combine the enhanced atomization and pre-mixing of small nozzle holes with the longer spray penetration lengths of large holes. The applied diagnostic, which is based on 1d spontaneous Raman scattering, yields the quantitative stoichiometric ratio and the temperature in the vapor phase.
Technical Paper

Development of Fatigue Evaluation Procedure for Weld-Bonded Joints Using the Battelle Structural Stress Method

2012-04-16
2012-01-0477
In this paper, the Battelle structural stress method for evaluating the fatigue life of welded joints is applied to weld-bonded joints. In order to overcome the complexity of modeling and analyzing both crack paths in weld-bonded joints, a superposition approach is proposed as a reasonable and effective alternative for fatigue design purpose. The superposition approach for evaluating the fatigue life of weld-bonded joints uses two simplified finite element (FE) models: a spot weld model and an adhesive bond model. Each simplified FE model is required to represent the fatigue behavior properly and to minimize the modeling effort without sacrificing the accuracy of the results. The superposition concept can be used in practice if the life evaluation results using the superposition are comparable with the experiments. For the spot welds, the recently developed simplified procedure and master fatigue S-N curve is employed [1].
Technical Paper

Exhaust Temperature Management for Diesel Engines Assessment of Engine Concepts and Calibration Strategies with Regard to Fuel Penalty

2011-09-11
2011-24-0176
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of carbon dioxide output in the traffic sector depict substantial requirements for the development of future diesel engines. These engines will comprise not only the mandatory diesel oxidation catalyst (DOC) and particulate filter DPF but a NOx aftertreatment system as well - at least for heavier vehicles. The oxidation catalysts as well as currently available NOx aftertreatment technologies, i.e., LNT and SCR, rely on sufficient exhaust gas temperatures to achieve a proper conversion. This is getting more and more critical due to the fact that today's and future measures for CO₂ reduction will result in further decrease of engine-out temperatures. Additionally this development has to be considered in the light of further engine electrification and hybridization scenarios.
Technical Paper

Closed Loop Combustion Control - Enabler of Future Refined Engine Performance Regarding Power, Efficiency, Emissions & NVH under Stringent Governmental Regulations

2011-09-11
2011-24-0171
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of the carbon dioxide output in the traffic sector depict substantial requirements for the global automotive industry and especially for the engine manufacturers. From the multiplicity of possible approaches and strategies for clear compliance with these demands, engine internal measures offer a large and, eventually more important, very economical potential. For example, the achievements in fuel injection technology are a measure which in the last years has contributed significantly to a notable reduction of the emissions of the modern DI Diesel engines at favorable fuel efficiency. Besides the application of modern fuel injection technology, the linked combustion control (Closed Loop Combustion Control) opens possibilities for a further optimization of the combustion process.
Technical Paper

Architecture of a Detailed Three Dimensional Piston Ring Model

2011-09-11
2011-24-0159
Piston rings are faced with a broad range of demands like optimal sealing properties, wear properties and reliability. Even more challenging boundary conditions must be met when latest developments in the fields of direct injection as well as the application of bio fuels. This complex variety of piston ring design requirements leads to the need of a comprehensive simulation model in order to support the development in the early design phase prior to testing. The simulation model must be able to provide classical objectives like friction analysis, wear rate and blow-by. Furthermore, it must include an adequate oil consumption model. The objective of this work is to provide such a simulation model that is embedded in the commercial MBS software ‘FEV Virtual Engine’. The MBS model consists of a cranktrain assembly with a rigid piston that contains flexible piston rings.
Technical Paper

Turbocharging of Downsized Gasoline DI Engines with 2 and 3 Cylinders

2011-09-11
2011-24-0138
Turbocharged DISI engines with four cylinders have established in the market and provide a performance comparable to larger six-cylinder engines in the smaller compartment of a four-cylinder engine. In the Japanese market, also turbo gasoline engines with 500 - 660 cm₃ displacement have a long tradition in Kei-Cars. However, those engines show a lower specific performance as would be required for propelling typical small or compact vehicles in Europe. Recently, two-cylinder turbo engines have come to market, which are found attractive with respect to sound, package, and also enable low vehicle fuel consumption in NEDC test. The paper presents a turbocharger layout study on 2- and 3-cylinder engines. It discusses the influence of cylinder displacement volume on the sizing of turbines and compressors, and how specific flow phenomena in the turbine can be captured in the simulation model.
Journal Article

Analysis of the Effect of Bio-Fuels on the Combustion in a Downsized DI SI Engine

2011-08-30
2011-01-1991
In this study the fuel influence of several bio-fuel candidates on homogeneous engine combustion systems with direct injection is investigated. The results reveal Ethanol and 2-Butanol as the two most knock-resistant fuels. Hence these two fuels enable the highest efficiency improvements versus RON95 fuel ranging from 3.6% - 12.7% for Ethanol as a result of a compression ratio increase of 5 units. Tetrahydro-2-methylfuran has a worse knock resistance and a decreased thermal efficiency due to the required reduction in compression ratio by 1.5 units. The enleanment capability is similar among all fuels thus they pose no improvements for homogeneous lean burn combustion systems despite a significant reduction in NOX emissions for the alcohol fuels as a consequence of lower combustion temperatures.
Technical Paper

Future Emission Concepts versus Fuel Quality Aspects - Challenges and Technical Concepts

2011-08-30
2011-01-2097
From current point of view future emission legislations for heavy-duty engines as well as industrial engines will require complex engine internal measures in combination with sophisticated aftertreatment systems as well as according control strategies to reach the emission targets. With EU VI, JP 09/NLT and US10 for heavy-duty engines as well as future Tier4 final or stage IV emission legislation for industrial applications, EGR + DPF + SCR probably will be combined for most applications and therefore quite similar technological approaches will be followed up in Europe as well as in the US and in Japan. Most “emerging markets” all over the world follow up the European, US or Japanese emission legislation with a certain time delay. Therefore similar technologies need to be introduced in these markets in the future. On the other hand specific market boundary conditions and requirements have to be considered for the development of tailored system concepts in these markets.
Journal Article

The Development of a Simplified Spot Weld Model for Battelle Structural Stress Calculation

2011-04-12
2011-01-0479
The nodal force based Battelle structural stress method has shown its mesh insensitivity in the stress analysis of spot welds as well as fusion welds. In the conventional structural stress simulation procedure, the structural stress is calculated at the nodes along the nugget periphery. However, implementing a nugget into each spot weld is cumbersome and time consuming not only in preparing mesh for FE analysis but also in preparing a series of structural stress calculation after finishing the FE analysis. Therefore, the efficiency of the current Battelle structural stress practice for spot welds can be improved significantly for structures with a large number of spot welds. The simplified modeling procedure presented here delivers reliable structural stresses at spot welds and these stresses can then be utilized for fatigue life prediction using a master S-N Curve approach that is applicable to wide range of spot welding techniques.
Journal Article

Performance Assessment of a Multi-Functional Reactor Under Conventional and Advanced Combustion Diesel Engine Exhaust Conditions

2011-04-12
2011-01-0606
Current progress in the development of diesel engines substantially contributes to the reduction of NOx and Particulate Matter (PM) emissions but will not succeed to eliminate the application of Diesel Particulate Filters (DPFs) in the future. In the past we have introduced a Multi-Functional Reactor (MFR) prototype, suitable for the abatement of the gaseous and PM emissions of the Low Temperature Combustion (LTC) engine operation. In this work the performance of MFR prototypes under both conventional and advanced combustion engine operating conditions is presented. The effect of the MFR on the fuel penalty associated to the filter regeneration is assessed via simulation. Special focus is placed on presenting the performance assessment in combination with the existing differences in the morphology and reactivity of the soot particles between the different modes of diesel engine operation (conventional and advanced). The effect of aging on the MFR performance is also presented.
Technical Paper

Relationship between Fuel Properties and Sensitivity Analysis of Non-Aromatic and Aromatic Fuels Used in a Single Cylinder Heavy Duty Diesel Engine

2011-04-12
2011-01-0333
Fuel properties are always considered as one of the main factors to diesel engines concerning performance and emission discussions. There are still challenges for researchers to identify the most correlating and non-correlating fuel properties and their effects on engine behavior. Statistical analyses have been applied in this study to derive the most un-correlating properties. In parallel, sensitivity analysis was performed for the fuel properties as well as to the emission and performance of the engine. On one hand, two different analyses were implemented; one with consideration of both, non-aromatic and aromatic fuels, and the other were performed separately for each individual fuel group. The results offer a different influence on each type of analysis. Finally, by considering both methods, most common correlating and non-correlating properties have been derived.
Technical Paper

Shape Optimization of a Single Cylinder Engine Crankshaft

2011-04-12
2011-01-1077
Due to increasing demand for environment friendly vehicles with better fuel economy and strict legislations on greenhouse gas emissions, lightweight design has become one of the most important issues concerning the automobile industry. Within the scope of this work lightweight design potentials that a conventional single cylinder engine crankshaft offers are researched through utilization of structural optimization techniques. The objective of the study is to reduce mass and moment of inertia of the crankshaft with the least possible effect on the stiffness and strength. For precise definition of boundary conditions and loading scenarios multi body simulations are integrated into the optimization process. The loading conditions are updated at the beginning of each optimization loop, in which a multi body simulation of the output structure from the previous optimization loop is carried out.
Technical Paper

Effect of Intake Port Design on the Flow Field Stability of a Gasoline DI Engine

2011-04-12
2011-01-1284
The application of technologies such as direct injection, turbo charging and variable valve timing has caused a significant evolution of the gasoline engine with positive effects on fuel consumption and emissions. The current developments are primarily focused on the realization of improved full load characteristics and fuel consumption reduction with stoichiometric operation, following the downsizing approach in combination with turbo charging and high specific power. The requirements of high specific power in a relatively small cylinder displacement and a wide range of DI injection specifications lead to competing development targets and to a high number of degrees of freedom during engine layout and optimization. One of the major targets is to assess the stability of the combustion system in the early development phase.
Technical Paper

Glow-plug Ignition of Ethanol Fuels under Diesel Engine Relevant Thermodynamic Conditions

2011-04-12
2011-01-1391
The requirement of reducing worldwide CO₂ emissions and engine pollutants are demanding an increased use of bio-fuels. Ethanol with its established production technology can contribute to this goal. However, due to its resistive auto-ignition behavior the use of ethanol-based fuels is limited to the spark-ignited gasoline combustion process. For application to the compression-ignited diesel combustion process advanced ignition systems are required. In general, ethanol offers a significant potential to improve the soot emission behavior of the diesel engine due to its oxygen content and its enhanced evaporation behavior. In this contribution the ignition behavior of ethanol and mixtures with high ethanol content is investigated in combination with advanced ignition systems with ceramic glow-plugs under diesel engine relevant thermodynamic conditions in a high pressure and temperature vessel.
X