Refine Your Search

Topic

Author

Search Results

Journal Article

Validation Metric for Dynamic System Responses under Uncertainty

2015-04-14
2015-01-0453
To date, model validation metric is prominently designed for non-dynamic model responses. Though metrics for dynamic responses are also available, they are specifically designed for the vehicle impact application and uncertainties are not considered in the metric. This paper proposes the validation metric for general dynamic system responses under uncertainty. The metric makes use of the popular U-pooling approach and extends it for dynamic responses. Furthermore, shape deviation metric was proposed to be included in the validation metric with the capability of considering multiple dynamic test data. One vehicle impact model is presented to demonstrate the proposed validation metric.
Technical Paper

Fluid Structure Interaction Simulations Applied to Automotive Aerodynamics

2015-04-14
2015-01-1544
One of the passive methods to reduce drag on the unshielded underbody of a passenger road vehicle is to use a vertical deflectors commonly called air dams or chin spoilers. These deflectors reduce the flow rate through the non-streamlined underbody and thus reduce the drag caused by underbody components protruding in to the high speed underbody flow. Air dams or chin spoilers have traditionally been manufactured from hard plastics which could break upon impact with a curb or any solid object on the road. To alleviate this failure mode vehicle manufacturers are resorting to using soft plastics which deflect and deform under aerodynamic loading or when hit against a solid object without breaking in most cases. This report is on predicting the deflection of soft chin spoiler under aerodynamic loads. The aerodynamic loads deflect the chin spoiler and the deflected chin spoiler changes the fluid pressure field resulting in a drag change.
Journal Article

The Impact of Spark Discharge Pattern on Flame Initiation in a Turbulent Lean and Dilute Mixture in a Pressurized Combustion Vessel

2013-04-08
2013-01-1627
An operational scheme with fuel-lean and exhaust gas dilution in spark-ignited engines increases thermal efficiency and decreases NOx emission, while these operations inherently induce combustion instability and thus large cycle-to-cycle variation in engine. In order to stabilize combustion variations, the development of an advanced ignition system is becoming critical. To quantify the impact of spark-ignition discharge, ignitability tests were conducted in an optically accessible combustion vessel to characterize the flame kernel development of lean methane-air mixture with CO₂ simulating exhaust diluent. A shrouded fan was used to generate turbulence in the vicinity of J-gap spark plug and a Variable Output Ignition System (VOIS) capable of producing a varied set of spark discharge patterns was developed and used as an ignition source. The main feature of the VOIS is to vary the secondary current during glow discharge including naturally decaying and truncated with multiple strikes.
Journal Article

Regenerative Braking Control Enhancement for the Power Split Hybrid Architecture with the Utilization of Hardware-in-the-loop Simulations

2013-04-08
2013-01-1466
This study presents the utilization of the hardware-in-the-loop (HIL) approach for regenerative braking (regen) control enhancement efforts for the power split hybrid vehicle architecture. The HIL stand used in this study includes a production brake control module along with the hydraulic brake system, constituted of an accelerator/brake pedal assembly, electric vacuum booster and pump, brake hydraulic circuit and four brake calipers. This work presents the validation of this HIL simulator with real vehicle data, during mild and heavy braking. Then by using the HIL approach, regen control is enhanced, specifically for two cases. The first case is the jerk in deceleration caused by the brake booster delay, during transitions from regen to friction braking. As an example, the case where the regen is ramped out at a low speed threshold, and the hydraulic braking ramped in, can be considered.
Technical Paper

Li-Ion Battery SoC Estimation Using a Bayesian Tracker

2013-04-08
2013-01-1530
Hybrid, plug-in hybrid, and electric vehicles have enthusiastically embraced rechargeable Li-ion batteries as their primary/supplemental power source of choice. Because the state of charge (SoC) of a battery indicates available remaining energy, the battery management system of these vehicles must estimate the SoC accurately. To estimate the SoC of Li-ion batteries, we derive a normalized state-space model based on Li-ion electrochemistry and apply a Bayesian algorithm. The Bayesian algorithm is obtained by modifying Potter's squareroot filter and named the Potter SoC tracker (PST) in this paper. We test the PST in challenging test cases including high-rate charge/discharge cycles with outlier cell voltage measurements. The simulation results reveal that the PST can estimate the SoC with accuracy above 95% without experiencing divergence.
Technical Paper

The Integrated Electric Lifestyle: The Economic and Environmental Benefits of an Efficient Home-Vehicle System

2013-04-08
2013-01-0495
In recent years, the residential and transportation sectors have made significant strides in reducing energy consumption, mainly by focusing efforts on low-hanging fruit in each sector independently. This independent viewpoint has been successful in the past because the user needs met and resources consumed in each sector have been clearly distinct. However, the trend towards vehicle electrification has blurred the boundary between the sectors. With both the home and vehicle now relying upon the same energy source, interactions between the systems can no longer be neglected. For example, when tiered utility pricing schemes are considered, the energy consumption of each system affects the cost of the other. In this paper, the authors present an integrated Home-Vehicle Simulation Model (HVSM), allowing the designer to take a holistic view.
Technical Paper

Developing the AC17 Efficiency Test for Mobile Air Conditioners

2013-04-08
2013-01-0569
Chrysler, Ford, General Motors, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have collaborated over the past two years to develop an efficiency test for mobile air conditioner (MAC) systems. Because the effect of efficiency differences between different MAC systems and different technologies is relatively small compared to overall vehicle fuel consumption, quantifying these differences has been challenging. The objective of this program was to develop a single dynamic test procedure that is capable of discerning small efficiency differences, and is generally representative of mobile air conditioner usage in the United States. The test was designed to be conducted in existing test facilities, using existing equipment, and within a sufficiently short time to fit standard test facility scheduling. Representative ambient climate conditions for the U.S. were chosen, as well as other test parameters, and a solar load was included.
Journal Article

HC Traps for Gasoline and Ethanol Applications

2013-04-08
2013-01-1297
In-line hydrocarbon (HC) traps are not widely used to reduce HC emissions due to their limited durability, high platinum group metal (PGM) concentrations, complicated processing, and insufficient hydrocarbon (HC) retention temperatures required for efficient conversion by the three-way catalyst component. New trapping materials and system architectures were developed utilizing an engine dynamometer test equipped with dual Fourier Transform Infrared (FTIR) spectrometers for tracking the adsorption and desorption of various HC species during the light-off period. Parallel laboratory reactor studies were conducted which show that the new HC trap formulations extend the traditional adsorption processes (i.e., based on physic-sorption and/or adsorption at acid sites) to chemical reaction mechanisms resulting in oligomerized, dehydro-cyclization, and partial coke formation.
Journal Article

An Assessment of the Rare Earth Element Content of Conventional and Electric Vehicles

2012-04-16
2012-01-1061
Rare earths are a group of elements whose availability has been of concern due to monopolistic supply conditions and environmentally unsustainable mining practices. To evaluate the risks of rare earths availability to automakers, a first step is to determine raw material content and value in vehicles. This task is challenging because rare earth elements are used in small quantities, in a large number of components, and by suppliers far upstream in the supply chain. For this work, data on rare earth content reported by vehicle parts suppliers was assessed to estimate the rare earth usage of a typical conventional gasoline engine midsize sedan and a full hybrid sedan. Parts were selected from a large set of reported parts to build a hypothetical typical mid-size sedan. Estimates of rare earth content for vehicles with alternative powertrain and battery technologies were made based on the available parts' data.
Technical Paper

Communication for Plug-in Electric Vehicles

2012-04-16
2012-01-1036
This paper is the third in the series of documents designed to record the progress on the SAE Plug-in Electric Vehicle (PEV) communication task force. The initial paper (2010-01-0837) introduced utility communications (J2836/1™ & J2847/1) and how the SAE task force interfaced with other organizations. The second paper (2011-01-0866) focused on the next steps of the utility requirements and added DC charging (J2836/2™ & J2847/2) along with initial effort for Reverse Power Flow (J2836/3™ & J2847/3). This paper continues with the following: 1. Completion of DC charging's 1st step publication of J2836/2™ & J2847/2. 2. Completion of 1st step of communication requirements as it relates to PowerLine Carrier (PLC) captured in J2931/1. This leads to testing of PLC products for Utility and DC charging messages using EPRI's test plan and schedule. 3. Progress for PEV communications interoperability in J2953/1.
Technical Paper

Crash Test Pulses for Advanced Batteries

2012-04-16
2012-01-0548
This paper reports a 2010 study undertaken to determine generic acceleration pulses for testing and evaluating advanced batteries for application in electric passenger vehicles. These were based on characterizing vehicle acceleration time histories from standard laboratory vehicle crash tests. Crash tested passenger vehicles in the United States vehicle fleet of the model years 2005-2009 were used. The crash test data were gathered from the following test modes and sources: 1 Frontal rigid flat barrier test at 35 mph (NHTSA NCAP) 2 Frontal 40% offset deformable barrier test at 40 mph (IIHS) 3 Side moving deformable barrier test at 38 mph (NHTSA side NCAP) 4 Side oblique pole test at 20 mph (US FMVSS 214/NHTSA side NCAP) 5 Rear 70% offset moving deformable barrier impact at 50 mph (US FMVSS 301). The accelerometers used were from locations in the vehicle where deformation is minor or non-existent, so that the acceleration represents the “rigid-body” motion of the vehicle.
Technical Paper

EGR and Swirl Distribution Analysis Using Coupled 1D-3D CFD Simulation for a Turbocharged Heavy Duty Diesel Engine

2011-09-13
2011-01-2222
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbo Diesel and code named "Scorpion" was designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. A high pressure Exhaust Gas Recirculation (EGR) layout in combination with a Variable Geometry Turbine (VGT) is used to deliver cooled EGR for in-cylinder NOx reduction. The cylinder-to-cylinder variation of EGR and swirl ratio is tightly controlled by the careful design of the EGR mixer and intake system flow path to reduce variability of cylinder-out PM and NOx emissions. 3D-CFD studies were used to quickly screen several EGR mixer designs based on mixing efficiency and pressure drop considerations. To optimize the intake system, 1D-3D co-simulation methodology with AVL-FIRE and AVL-BOOST has been used to assess the cylinder-to-cylinder EGR distribution and dynamic swirl.
Technical Paper

ACOUSTOMIZE™ A Method to Evaluate Cavity Fillers NVH & Sealing Performance

2011-05-17
2011-01-1672
ACOUSTOMIZE™ is a new method of acoustic evaluation used for the purpose of understanding and optimizing NVH performance of vehicles. The following paper documents a case study of the ACOUSTOMIZE™ test methodology on a passenger car BIW. This study includes an analysis of noise flow through BIW locations, a comparison of noise sound levels through BIW cavities with and without a sound treatment package and a comparison of the original cavity sealing design package consisting of baffles, tapes and baggies to low density polyurethane NVH Foam. The results of the study show detection of complex BIW pass throughs that the body leakage test (BLT) was not able to find. In addition, the data shows improved noise reduction with the low density polyurethane foam versus the original cavity sealing design package.
Technical Paper

Two-stage Gear Driveline Vibration and Noise

2011-05-17
2011-01-1542
Gear meshing noise is a common noise issue in manual transmission, its noise generation mechanism has been studied extensively [1, 2]. But most of time we have situations where multiple gear sets are connected in series and the noise and vibration behavior for a multi-stage gear can be quite different due to vibration inter-actions or interferences among multiple gear sets. In this paper, a two-stage gear driveline model was built using MSC ADAMS. Vibration order contents of a two-stage gear driveline were analyzed by both CAE simulation and theoretical calculations. In addition to gear meshing vibration orders of each gear set, the orders resulted from modulations between individual gear meshing and their harmonics were evident in the results. These special order contents were verified by experimental results, and also evidenced on transmission end of line tester results at transmission supplier GJT in Ganzhou, China.
Technical Paper

Establishing Localized Fire Test Methods and Progressing Safety Standards for FCVs and Hydrogen Vehicles

2011-04-12
2011-01-0251
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 11 years. In the past couple of years, significant attention has been directed toward a revision to the standard for vehicular hydrogen systems, SAE J2579(1). In addition to streamlining test methodologies for verification of Compressed Hydrogen Storage Systems (CHSSs) as discussed last year,(2) the working group has been considering the effect of vehicle fires, with the major focus on a small or localized fire that could damage the container in the CHSS and allow a burst before the Pressure Relief Device (PRD) can activate and safely vent the compressed hydrogen stored from the container.
Technical Paper

Benchmarking of an Open Source CFD Process for Aerodynamics Prediction of Multiple Vehicle Types

2011-04-12
2011-01-0163
A benchmark study was conducted to assess the capability of an open source CFD based process to accurately simulate the physics of the flow field around various vehicle types. The ICON FOAMpro process was used to simulate the flow field of four baseline geometries of a Truck, CD-Car, B-Car and an SUV. Further studies were carried out to assess the effects of geometry variations on the predicted aerodynamic lift and drag. A Detached-Eddy Simulation (DES) approach was chosen for the benchmarks. In addition to aerodynamic lift and drag values, the results for surface pressure data, surface and wake flow fields were calculated. These results were compared with values obtained using Ford's existing CFD processes.
Technical Paper

Development of a Canning Method for Catalytic Converters using Ultra Thin Wall Substrates

2004-03-08
2004-01-0144
There are benefits of using ultra thin wall (UTW) substrates (i.e., 900/2, 400/4, etc) in lowering cost and emission level. However, the more fragile mechanical characteristics of the UTW present a challenge to design and manufacture of robust catalytic converters. This paper describes a method of canning trial, where a combined Design of Experiment / Monte-Carlo analysis method was used, to develop and validate a canning method for ultra thin wall substrates. Canning trials were conducted in two stages-- Prototype Canning Trial and Production Canning Trial. In Prototype Canning Trial, the root cause of substrate failure was identified and a model for predicting substrate failure was established. Key factors affecting scrap rate and gap capability were identified and predictions were performed on scrap rate and gap capability with the allowed variations in the key factors. The results provided guidelines in designing production line and process control.
Technical Paper

Some Factors in the Subjective Evaluation of Laboratory Simulated Ride

2001-04-30
2001-01-1569
Effects of DOF and subjective method on evaluations of ride quality on the Ford Vehicle Vibration Simulator were studied. Seat track vibrations from 6 vehicles were reproduced on the 6 DOF seat shaker in a DOE with pitch and roll as factors. These appeared in two evaluations of ride/shake; semantic scaling by 30 subjects of 6 vehicles, and paired comparisons by 16 of the subjects on 3 of the vehicles. Both methods found significant vehicle, pitch and roll effects. Order dependence was shown for semantic scaling. The less susceptible paired comparison method gave a different ordering, and is thus preferred.
Technical Paper

Steering and Suspension Test and Analysis

2000-05-01
2000-01-1626
This paper will discuss the various tools used to measure the steering and suspension properties of a vehicle. Measuring the kinematic and compliance properties of the steering and suspension systems is an important part of the vehicle development process. Some of the ways these measurements are used include confirmation of vehicle design and build, to create and correlate CAE models, and for diagnosis of steering and handling concerns. Understanding exactly how the steering and suspension systems are performing is an important step in the development process. We have found that by employing the proper tools and methods, plus having a defined vehicle dynamics fingerprint process, that most issues and concerns can be successfully resolved.
Technical Paper

Automotive Electrical System in the New Millennium

1999-11-15
1999-01-3747
The automotive industry is investigating the change of electrical system voltage in a vehicle from the present 14 volt (12V battery) to 42 volt (36V battery) to integrate new electrical and electronic features. These new features require more amperes, thicker wires, large power devices, and eventually higher cost. The existing 14V system is very difficult to sustain so much content because of constraints of performance, efficiency, cost, packaging space, and manufacture-ability. This paper discusses foreseeable needs moving to a higher voltage, and reasons of 42V selection. It explores benefits and drawbacks when the voltage is changed from 14V to 42V in the areas of wire harness, power electronics, smart switching, power supply, etc. Finally, two typical 42/14V dual voltage architectures are presented for a likely 42V transition scenario.
X