Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Hollow Shaft Liquid Cooling Method for Performance Improvement of Permanent Magnet Synchronous Motors Used in Electric Vehicles

2023-09-22
2023-01-5067
Operating condition of rotor embedded magnet materials for permanent magnet synchronous motor (PMSM) critically affect electric vehicle (EV) range and dynamic characteristics. The rotor liquid cooling technique has a deep influence on PMSM performance improvement, and begin to be studied and applied increasingly in EV field. Here, the fluid, thermal, and electromagnetic characteristics of motor with and without hollow-shaft cooling are researched comprehensively based on 100 kW PMSM with housing water jacket (HWJ) and hollow-shaft rotor water jacket (SWJ). The solid models are constructed considering temperature-dependent power loss and anisotropic thermal conductivity. After the fluid models are set up by using Reynolds stress model (RSM), conjugate heat transfer is conducted through computational fluid dynamics (CFD) simulation, and is verified by real PMSM test bench experiments.
Technical Paper

Research on Regenerative Braking Control Strategy under High Charge State Using Prescribed Performance Prediction Control

2022-10-28
2022-01-7041
To reduce the energy consumption level of electric vehicles, the working range of the regenerative braking system will gradually expand to the high state of charge of the battery. The time delay in the control signal transmission path of the high state of charge regenerative braking control process will affect the regenerative braking. At the same time, regenerative braking under a high state of charge puts forward higher requirements for the control accuracy of regenerative current. In the research of this paper, the motor model, battery model, and vehicle dynamics model are firstly established by using MATLAB/Simulink, and the dynamic relationship between regenerative current and regenerative braking torque is analyzed at the same time. Considering the system time delay, this paper proposes a high-charge regenerative braking control strategy (SPPC) that combines Smith prediction and prescribed performance control.
Technical Paper

Understanding Catalyst Overheating Protection (COP) as a Source of Post-TWC Ammonia Emissions from Petrol Vehicle

2022-08-30
2022-01-1032
TWC exposure to extreme temperature could result in irreversible damage or thermal failure. Thus, a strategy embedded in the engine control unit (ECU) called catalyst overheating protection (COP) will be activated to prevent TWC overheating. When COP is activated, the command air-fuel ratio will be enriched to cool the catalyst monolith down. Fuel enrichment has been proven a main prerequisite for ammonia formation in hot TWCs as a by-product of NOx reduction. Hence, COP events could theoretically be a source of post-catalyst ammonia from petrol vehicles, but this theory is yet to be confirmed in published literature. This paper validated this hypothesis using a self-programmed chassis-level test. The speed of the test vehicle was set to constant while the TWC temperature was raised stepwise until a COP event was activated.
Technical Paper

Computer-Aided Engineering Modeling and Automation on High-Performance Computing

2022-06-27
2022-01-5051
The computer-aided engineering (CAE) automation study requires a large disk space and a premium processor. If all finite element (FE) models run locally, it may crash the local machine, and if the FE model runs on high-performance computing (HPC), transferring data from the server to the local machine to do the optimization may cause latency issues. This automation study provides a unique road map to optimize the design by working efficiently using the initial setup on the local machine, running an analysis of a large number of FE models on HPC, and performing optimization on the server. CAE Automation process has been demonstrated using a case study on a driveline component, crush spacer. Crush spacer is a very critical engineering design because, first, it provides the minimum required preload to the bearing inner races to keep them in position and, second, it endures a number of duty cycles.
Technical Paper

A Comparative Study of Recurrent Neural Network Architectures for Battery Voltage Prediction

2021-09-21
2021-01-1252
Electrification is the well-accepted solution to address carbon emissions and modernize vehicle controls. Batteries play a critical in the journey of electrification and modernization with battery voltage prediction as the foundation for safe and efficient operation. Due to its strong dependency on prior information, battery voltage was estimated with recurrent neural network methods in the recent literatures exploring a variety of deep learning techniques to estimate battery behaviors. In these studies, standard recurrent neural networks, gated recurrent units, and long-short term memory are popular neural network architectures under review. However, in most cases, each neural network architecture is individually assessed and therefore the knowledge about comparative study among three neural network architecture is limited. In addition, many literatures only studied either the dynamic voltage response or the voltage relaxation.
Technical Paper

Investigation on the Deformation of Injector Components and Its Influence on the Injection Process

2020-04-14
2020-01-1398
The deformation of injector components cannot be disregarded as the pressure of the system increases. Deformation directly affects the characteristics of needle movement and injection quantity. In this study, structural deformation of the nozzle, the needle and the control plunger under different pressures is calculated by a simulation model. The value of the deformation of injector components is calculated and the maximum deformation location is also determined. Furthermore, the calculated results indicates that the deformation of the control plunger increases the control chamber volume and the cross-section area between the needle and the needle seat. A MATLAB model is established to The influence of structural deformation on needle movement characteristics and injection quantity is investigate by a numerical model. The results show that the characteristic points of needle movement are delayed and injection quantity increases due to the deformation.
Technical Paper

Numerical Simulation and Optimization for Combustion of an Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle (UAV)

2020-04-14
2020-01-0782
An opposed piston two-stroke engine is more suitable for use in an unmanned aerial vehicle because of its small size, excellent self-balancing, stable operation, and low noise. Consequently, in this study, based on experimental data for a prototype opposed piston two-stroke engine, numerical simulation models were established using GT-POWER for 1D simulation and AVL-FIRE for 3D CFD simulation. The mesh grid and solver parameters for the numerical model of the CFD simulation were determined to guarantee the accuracy of the numerical simulation, before studying and optimizing the ventilation efficiency of the engine with different dip angles. Furthermore, the fuel spray and combustion were analyzed and optimized in details.
Technical Paper

Research of the High Altitude Control Strategy of the Piston Aero-engine Using Two-stage Turbocharger Coupled with single Supercharging System

2019-12-19
2019-01-2211
Aiming at the high altitude operation problems for piston-type aero-engines and to improve the practical ceiling and high altitude dynamic performance, this thesis analyzes a controllable three-stage composite supercharging system, using a two-stage turbocharger coupled supercharger method. The GT-Power simulation model of a four-cylinder boxer engine was established, and the control strategy of variable flight height was obtained. The simulation research of engine performance from 0 to 20,000 meters above sea level has been carried out, which shows that the engine power is at the same level as the plain condition, and it could still maintain 85.28 percent of power even at the height of 20,000 meters, which meets the flight requirements of the aircraft.
Technical Paper

A Novel Dual Nonlinear Observer for Vehicle System Roll Behavior with Lateral and Vertical Coupling

2019-04-02
2019-01-0432
The study of vehicle coupling state estimation accuracy especially in observer-based vehicle chassis control for improving road handling and ride comfort is a challenging task for vehicle industry under various driving conditions. Due to a large amount of life safety arising from vehicle roll behavior, how to precisely acquire vehicle roll state and rapidly provide for the vehicle control system are of great concern. Simultaneously, uncertainty is unavoidable for various aspects of a vehicle system, e.g., varying sprung mass, moment of inertia and position of the center of gravity. To deal with the above issues, a novel dual observer approach, which combines adaptive Unscented Kalman Filter (AUKF) and Takagi-Sugeno (T-S), is proposed in this paper. A full-car nonlinear model is first established to describe vehicle lateral and vertical coupling roll behavior under various road excitation.
Technical Paper

Response Decoupling Method in Mount Design with Emphasis on Transient Load Conditions

2019-01-18
2018-01-5046
This research examined the focused design, elastic design, energy decoupling, and torque roll axis (TRA) decoupling methods for mount optimization design. Requiring some assumptions, these methods are invalid for some load conditions and constraints. The linearity assumption is advantageous and simplifies both design and optimization analysis, facilitating engineering applications. However, the linearity is rarely seen in real-world applications, and there is no practical method to directly measure the reaction forces in the three locally orthogonal directions, preventing validation of existing methods by experimental results. For nonlinear system identification, there are additional challenges such as unobservable internal variables and the uncertainty of measured data.
Technical Paper

Fuzzy Observer for Nonlinear Vehicle System Roll Behavior with Coupled Lateral and Vertical Dynamics

2018-04-03
2018-01-0559
The study of vehicle state estimation performance especially on the aspect of observer-based control for improving vehicle ride comfort and road handling is a challenging task for vehicle industry. Since vehicle roll behavior with various road excitations act an important part of driving safety, how to accurately obtain vehicle state under various driving scenes are of great concern. However, previous researches seldom consider coupling relation between vehicle vertical and lateral response with steering input under various road excitation. To address this issue, comprehension analyses on vehicle roll state estimation with coupled input are present in this paper. A full-car nonlinear Takagi-Sugeno (T-S) fuzzy model is first created to describe vehicle lateral and vertical coupling dynamics.
Technical Paper

Effect of Hydrogen Fraction on Laminar Flame Characteristics of Methanol-Hydrogen-Air Mixture at Atmospheric Pressure

2017-10-08
2017-01-2277
Methanol has been regarded as a potential transportation fuel due to its advanced combustion characteristics and flexible source. However, it is suffering from misfire and high HC emissions problems under cold start and low load conditions either on methanol SI engine or on methanol/diesel dual fuel engine. Hydrogen is a potential addition that can enhance the combustion of methanol due to its high flammability and combustion stability. In the current work, the effect of hydrogen fraction on the laminar flame characteristics of methanol- hydrogen-air mixture under varied equivalence ratio was investigated on a constant volume combustion chamber system coupled with a schlieren setup. Experiments were performed over a wide range of equivalence ratio of the premixed charge, varied from 0.8 to 1.4, as well as different hydrogen fraction, 0%, 5%, 10%, 15% and 20% (n/n). All tests were carried out at fixed temperature and pressure of 400K and 0.1MPa.
Technical Paper

A Cylinder Pressure Correction Method Based on Calculated Polytropic Exponent

2017-10-08
2017-01-2252
The acquisition of more authentic cylinder pressure data is the basis of engine combustion analysis. Due to the multiple advantages, quartz piezoelectric pressure transducers are generally applied to the measurement of the cylinder pressure. However, these transducers can only produce dynamic cylinder pressure data which may be significantly different from the actual values. Thus, the cylinder pressure data need to be corrected through a certain method, while different cylinder pressure correction methods will cause result divergences of the combustion analysis. This paper aims to acquire a proper cylinder pressure correction method by carrying out theoretical analysis based on the polytropic process in the compression stroke as well as the experimental research of the cylinder pressure of a turbocharged eight-cylinder diesel engine.
Technical Paper

Effects of Nozzle Hole Diameter on Diesel Sprays in Constant Injection Mass Condition

2017-10-08
2017-01-2300
As known, the constant injection mass is a criterion for measuring the thermal efficiency of diesel engines. In this study, the effects of nozzle hole diameter on diesel free-spray characteristics were investigated in constant injection mass condition. The experiment was performed in a constant volume combustion chamber equipped with a high pressure common-rail injector that can change nozzles. Three single-hole axis nozzles with different hole diameters were used. High speed camera and Schlieren visualization set-up were used to capture the spray behaviors of liquid phase and vapor phase respectively. For liquid phase spray, the higher nozzle hole diameter, the higher were the liquid phase spray penetration rate and the saturated liquid phase spray penetration length. The saturated liquid phase spray penetration length wound not grow but oscillate around different mean values at the steady stage.
Technical Paper

Design and Optimization of Injector Based on Voice Coil Motor

2017-10-08
2017-01-2301
The electronic control of direct injection fuel system, which could improve engine fuel efficiency, dynamics and engine emission performance through good atomization, precise control of fuel injection time and improvement of fuel-gas mixture, is the key technology to achieve the stratified combustion and lean combustion. In this paper, a direct injection injector that based on voice coil motor was designed aiming at the technical characteristics of one 800cc two-stroke cam-less engine. Prior to a one - dimensional simulation model of injector was established by AMEsim and the maximal fuel injection demand was met via the optimization of the main parameters of the injector, the structure of the voice coil motor was optimized by magnetic equivalent circuit method. After that, the maximal flow rate of the injector was verified by the injector bench test while the atomization characteristic of the injector was verified by using a high-speed camera.
Technical Paper

Research on Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle by Thermodynamic Simulation

2017-10-08
2017-01-2408
The Opposed Piston Two-Stroke (OPTS) engine has many advantages on power density, fuel tolerance, fuel flexibility and package space. A type of self-balanced opposed-piston folded-crank train two-stroke engine for Unmanned Aerial Vehicle (UAV) was studied in this paper. AVL BOOST was used for the thermodynamic simulation. It was a quasi-steady, filling-and-emptying flow analysis -- no intake or exhaust dynamics were simulated. The results were validated against experimental data. The effects of high altitude environment on engine performance have been investigated. Moreover, the matching between the engine and turbocharger was designed and optimized for different altitude levels. The results indicated that, while the altitude is above 6000m, a multi-stage turbocharged engine system need to be considered and optimized for the UAV.
Technical Paper

Study on Nonlinear Rotordynamics Characteristics for Electric Compound Turbocharger

2017-10-08
2017-01-2418
The electric compound turbocharger(ECT) which integrates a high speed motor into a turbocharger rotor shaft can be used transiently to accelerate the turbocharger more quickly in response to an acceleration requirement. It can utilize the exhaust gas energy fully to improve the engine fuel efficiency and benefit for engine with lower emissions. The key technique of ECT is to solve the reliability problems when an electrical motor is integrated into a turbocharger shaft between the turbine and compressor wheels will increase the burden for the bearing support and affect the turbocharger shaft rotation characteristics. In order to know the dynamics behavior of higher load bearing system is explored for reliability, this paper focus on the nonlinear rotor dynamics characteristics of ECT rotor bearing system.
Technical Paper

Fault Detection and Diagnosis of Diesel Engine Lubrication System Performance Degradation Faults based on PSO-SVM

2017-10-08
2017-01-2430
Considering the randomness and instability of the oil pressure in the lubrication system, a new approach for fault detection and diagnosis of diesel engine lubrication system based on support vector machine optimized by particle swarm optimization (PSO-SVM) model and centroid location algorithm has been proposed. Firstly, PSO algorithm is chosen to determine the optimum parameters of SVM, to avoid the blindness of choosing parameters. It can improve the prediction accuracy of the model. The results show that the classify accuracy of PSO-SVM is improved compared with SVM in which parameters are set according to experience. Then, the support vector machine classification interface is fitted to a curve, and the boundary conditions of fault diagnosis are obtained. Finally, diagnose algorithm is achieved through analyzing the centroid movement of features. According to Performance degradation data, degenerate trajectory model is established based on centroid location.
Technical Paper

Fluid-Solid Coupled Heat Transfer Investigation of Wet Clutches

2017-10-08
2017-01-2442
The prediction of temperature distribution and variation of oil-cooled sliding disk pair is essential for the design of wet clutches and brakes in a vehicle transmission system. A two-phase coupled heat transfer model is established in the study and some fluid-solid coupled heat transfer simulations are performed to investigate the thermal behaviors of wet clutch during sliding by CFD method. Both cooling liquid and grooved solid disks are contained in the heat transfer model and the heat convection due to the cooling liquid in the radial grooves is also considered by fluid-solid coupled transient heat transfer simulations. The temperature distribution and variation of the grooved disk are discussed and analyzed in detail. The results indicate that the temperature distribution on the grooved disk is nonuniform. The temperature within the middle radius area is higher than that in the inner and outer radius area.
Technical Paper

A Novel Driver Model for Real-time Simulation on Electric Powertrain Test Bench

2017-10-08
2017-01-2460
In this paper, a novel driver model is proposed to track vehicle speed in MIL (Model-in-the-Loop) test system, which has structural consistency with HIL (Hardware-in-the-Loop) test system. First, the MIL test system which contains models of driver, vehicle and test bench is established. Second, according to the connections of the established models in Matlab/Simulink environment, the vehicle speed is calculated in vehicle model. Emphatically, through the deviation between driving cycle speed and calculated vehicle speed, PI controller in driver model adjusts the vehicle speed to ideal point through sending the torque command to drive motor, the ILC (Iterative Learning Control) controller modifies and stores P value of PI controller. Then, in order to obtain the better modification of PI controller, iterative learning control algorithm is deeply researched in term of types and parameters.
X