Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Considerations in HMI Design of a Reverse Braking Assist (RBA) System

2013-04-08
2013-01-0720
The Reverse Braking Assist (RBA) feature is designed to automatically activate full braking in a backing vehicle. When this feature activates, a backing vehicle is suddenly stopped or may slide to a stop. During this process, an understanding of the driver's behavior may be useful in the design of an appropriate human-machine-interface (HMI) for the RBA. Several experimental studies were done to examine driver behavior in response to an unexpected and automatic braking event while backing [1]. Two of these studies are reported in this paper. A 7-passenger Crossover Utility Vehicle was fitted with a rear-view camera, a center-stack mounted LCD screen, and ancillary recording devices. In the first study, an object was suddenly placed in the path of a backing vehicle. The backing vehicle came to a sudden and complete stop. The visual image of the backing path on the LCD prominently showed that an obstacle was present in the backing path of the vehicle.
Technical Paper

Engine Control Unit Modeling with Engine Feature C Code for HEV Applications

2013-04-08
2013-01-1451
Engine control unit (ECU) modeling using engine feature C code is an increasingly important part of new vehicle analysis and development tools. The application areas of feature based ECU models are numerous: a) cold vehicle fuel economy (FE) prediction required for recently introduced 5-cycle certification; b) vehicle thermal modeling; c) evaporative (purge) systems design; d) model-in-the-loop/software-in-the-loop (MIL/SIL) vehicle control development and calibration. The modeling method presented in the paper embeds production C-code directly into Simulink at a feature level using an S-Function wrapper. A collection of features critical to accurate engine behavior prediction are compiled individually and integrated according to the newly developed Engine Control Model Architecture (ECMA). Custom MATLAB script based tools enable efficient model construction.
Technical Paper

Internal combustion engine calibration teaching by Stand Alone System.

2010-10-06
2010-36-0346
Internal combustion engine calibration teaching by Stand Alone System. This paper illustrates a teaching methodology for technical students of internal combustion engine calibration, by stand alone engine control unit with variable ignition and fuel injection time. Using a system named HIS (Stand alone Electronic Control Unit), to change the engine parameters, as fuel injection time and ignition time, the students can optimize fuel consumption, performance and exhaust emission. The tests are developed using the DOE (design of experiments) technique of artificial intelligence.
Technical Paper

Virtual Engine Dynamometer in Service Life Testing of Transmissions: A Comparison Between Real Engine and Electric Dynamometers as Prime Movers in Validation Test Rigs

2010-04-12
2010-01-0919
A test cell was developed for evaluating a 6-speed automatic transmission. The target vehicle had an internal combustion 5.4L gasoline V8 engine. An electric dynamometer was used to closely simulate the engine characteristics. This included generating mean torque from the ECU engine map, with a transient capability of 10,000 rpm/second. Engine inertia was simulated with a transient capability of 20,000 rpm/second, and torque pulsation was simulated individually for each piston, with a transient capability of 50,000 rpm/second. Quantitative results are presented for the correlation between the engine driven and the dynamometer driven transmission performance over more than 60 test cycles. Concerns about using the virtual engine in validation testing are discussed, and related to the high frequency transient performance required from the electric dynamometer. Qualitative differences between the fueled engine and electric driven testing are presented.
Technical Paper

Ford Three-Way Catalyst and Feedback Fuel Control System

1978-02-01
780203
The objective of this paper is to describe the Ford Motor Company (Ford) approach of meeting exhaust emission regulations with a three-way catalyst and feedback control system. A pilot program was initiated to gain production experience with three-way catalyst systems in anticipation of expanded usage to meet future emission standards. The Ford system consists of a three-way catalyst with feedback control monitoring the exhaust oxygen concentration and controlling the fuel flow to produce a stoichiometric exhaust mixture. Mixture control is critical since catalyst NOx conversion efficiency is diminished when the exhaust mixture deviates from stoichiometry. Briefly, the control loop consists of zirconium dioxide exhaust sensor to indicate oxygen concentration, an electronic control unit, a vacuum regulator to proportion a vacuum signal to the carburetor, and a feedback controlled carburetor with vacuum modulated main fuel system.
X