Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Fuzzy Inference System for Understeer/Oversteer Detection Towards Model-Free Stability Control

2016-04-05
2016-01-1630
In this paper, a soft computing approach to a model-free vehicle stability control (VSC) algorithm is presented. The objective is to create a fuzzy inference system (FIS) that is robust enough to operate in a multitude of vehicle conditions (load, tire wear, alignment), and road conditions while at the same time providing optimal vehicle stability by detecting and minimizing loss of traction. In this approach, an adaptive neuro-fuzzy inference system (ANFIS) is generated using previously collected data to train and optimize the performance of the fuzzy logic VSC algorithm. This paper outlines the FIS detection algorithm and its benefits over a model-based approach. The performance of the FIS-based VSC is evaluated via a co-simulation of MATLAB/Simulink and CarSim model of the vehicle under various road and load conditions. The results showed that the proposed algorithm is capable of accurately indicating unstable vehicle behavior for two different types of vehicles (SUV and Sedan).
Journal Article

A Model-Free Stability Control Design Scheme with Active Steering Actuator Sets

2016-04-05
2016-01-1655
This paper presents the application of a proposed fuzzy inference system as part of a stability control design scheme implemented with active steering actuator sets. The fuzzy inference system is used to detect the level of overseer/understeer at the high level and a speed-adaptive activation module determines whether an active front steering, active rear steering, or active 4 wheel steering is suited to improve vehicle handling stability. The resulting model-free system is capable of minimizing the amount of model calibration during the vehicle stability control development process as well as improving vehicle performance and stability over a wide range of vehicle and road conditions. A simulation study will be presented that evaluates the proposed scheme and compares the effectiveness of active front steer (AFS) and active rear steer (ARS) in enhancing the vehicle performance. Both time and frequency domain results are presented.
Journal Article

An Investigation of the Effects of Cast Skin on the Mechanical Properties of an AM60 Die-Cast Magnesium Alloy

2015-04-14
2015-01-0510
Magnesium die-cast alloys are known to have a layered microstructure composed of: (1) An outer skin layer characterized by a refined microstructure that is relatively defect-free; and (2) A “core” (interior) layer with a coarser microstructure having a higher concentration of features such as porosity and externally solidified grains (ESGs). Because of the difference in microstructural features, it has been long suggested that removal of the surface layer by machining could result in reduced mechanical properties in tested tensile samples. To examine the influence of the skin layer on the mechanical properties, a series of round tensile bars of varying diameters were die-cast in a specially-designed mold using the AM60 Mg alloy. A select number of the samples were machined to different final diameters. Subsequently, all of the samples (as-cast as well as machined) were tested in tension.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Technical Paper

An Investigation on the Fatigue Behavior of Balanced and Unbalanced Epoxy-Aluminum Single Lap Joints

2015-04-14
2015-01-0551
The fatigue strength and failure behavior of A5754-O adhesively bonded single lap joints by a hot-curing epoxy adhesive were investigated in this paper. The single lap joints tested include balanced substrate joints (meaning same thickness) and unbalanced substrate joints, involving combinations of different substrate thicknesses. Cyclic fatigue test results show that the fatigue strength of bonded joints increase with the increasing substrate thickness. SEM and Energy Dispersive X-ray (EDX) were employed to investigate the failure mode of the joints. Two fatigue failure modes, substrate failure and failure within the adhesive were found in the testing. The failure mode of the joint changes from cohesive failure to substrate failure as the axial load is decreased, which reveals a fatigue resistance competition between the adhesive layer and the aluminum substrate.
Journal Article

Experimental Characterization and Modeling of Dry Dual Clutch Wear

2014-04-01
2014-01-1773
Clutch wear is dominantly manifested as the reduction of friction plate thickness. For dry dual clutch with position-controlled electromechanical actuators this affects the accuracy of normal force control because of the increased clutch clearance. In order to compensate for the wear, dry dual clutch is equipped with wear compensation mechanism. The paper presents results of experimental characterization and mathematical modeling of two clutch wear related effects. The first one is the decrease of clutch friction plate thickness (i.e. increase of clutch clearance) which is described using friction material wear rate experimentally characterized using a pin-on-disc type tribometer test rig. The second wear related effect, namely the influence of the clutch wear compensation mechanism activation at various stages of clutch wear on main clutch characteristics, was experimentally characterized using a clutch test rig which incorporates entire clutch with related bell housing.
Journal Article

Finite Element Modeling of Dissimilar Metal Self-piercing Riveting Process

2014-04-01
2014-01-1982
In present paper, the process of joining aluminum alloy 6111T4 and steel HSLA340 sheets by self-piercing riveting (SPR) is studied. The rivet material properties were obtained by inverse modeling approach. Element erosion technique was adopted in the LS-DYNA/explicit analysis for the separation of upper sheet before the rivet penetrates into lower sheet. Maximum shear strain criterion was implemented for material failure after comparing several classic fracture criteria. LS-DYNA/implicit was used for springback analysis following the explicit riveting simulation. Large compressive residual stress was observed near frequent fatigue crack initiation sites, both around vicinity of middle inner wall of rivet shank and upper 6111T4 sheet.
Journal Article

Failure Mode and Fatigue Behavior of Dissimilar Laser Welds in Lap-Shear Specimens of Aluminum and Copper Sheets

2014-04-01
2014-01-1986
Failure mode and fatigue behavior of dissimilar laser welds in lap-shear specimens of aluminum and copper sheets are investigated. Quasi-static tests and fatigue tests of laser-welded lap-shear specimens under different load ranges with the load ratio of 0.1 were conducted. Optical micrographs of the welds after the tests were examined to understand the failure modes of the specimens. For the specimens tested under quasi-static loading conditions, the micrograph indicates that the specimen failed through the fusion zone of the aluminum sheet. For the specimens tested under cyclic loading conditions, two types of failure modes were observed under different load ranges. One failure mode has a kinked crack initiating from the interfacial surface between the aluminum and copper sheets and growing into the aluminum fusion zone at an angle close to 90°.
Journal Article

Fatigue Behavior of Stainless Steel Sheet Specimens at Extremely High Temperatures

2014-04-01
2014-01-0975
Active regeneration systems for cleaning diesel exhaust can operate at extremely high temperatures up to 1000°C. The extremely high temperatures create a unique challenge for the design of regeneration structural components near their melting temperatures. In this paper, the preparation of the sheet specimens and the test set-up based on induction heating for sheet specimens are first presented. Tensile test data at room temperature, 500, 700, 900 and 1100°C are then presented. The yield strength and tensile strength were observed to decrease with decreasing strain rate in tests conducted at 900 and 1100°C but no strain rate dependence was observed in the elastic properties for tests conducted below 900°C. The stress-life relations for under cyclic loading at 700 and 1100°C with and without hold time are then investigated. The fatigue test data show that the hold time at the maximum stress strongly affects the stress-life relation at high temperatures.
Journal Article

Thermophysical Properties Measurement of Interior Car Materials vs. Temperature and Mechanical Compression

2014-04-01
2014-01-1024
Thermophysical properties of materials used in the design of automotive interiors are needed for computer simulation of climate conditions inside the vehicle. These properties are required for assessment of the vehicle occupants' thermal sensation as they come in contact with the vehicle interior components, such as steering wheels, arm rests, instruments panel and seats. This paper presents the results of an investigation into the thermophysical properties of materials which are required for solving the non-linear Fourier equations with any boundary conditions and taking into account materials' specific heat, volume density, thermal conductivity, and thermal optical properties (spectral and total emissivity and absorptivity). The model and results of the computer simulation will be published in a separate paper.
Technical Paper

On Modeling the Hot Stamping of High Strength Aluminum Sheet

2014-04-01
2014-01-0983
This paper documents the finite element (FE) analysis of a hot stamping process for high strength aluminum sheet. In this process a 7075 blank, heated above its solvus temperature, was simultaneously die quenched and stamped in a room temperature die to form a B-pillar outer reinforcement. Two modeling approaches have been investigated: an isothermal mechanical model and a non-isothermal coupled thermo-mechanical model. The accuracy of each approach was assessed by comparing the predicted strain and thickness distributions to experimental measurements from a formed panel. The coupled thermo-mechanical model provided the most accurate prediction.
Technical Paper

Experimental Evaluation of the Quench Rate of AA7075

2014-04-01
2014-01-0984
The aluminum alloy 7075-T6 has the potential to be used for structural automotive body components as an alternative to boron steel. Although this alloy shows poor formability at room temperature, it has been demonstrated that hot stamping is a feasible sheet metal process that can be used to overcome the forming issues. Hot stamping is an elevated temperature forming operation in which a hot blank is formed and quenched within a stamping die. Attaining a high quench rate is a critical step of the hot stamping process and corresponds to maximum strength and corrosion resistance. This work looks at measuring the quench rate of AA7075-T6 by way of three different approaches: water, a water-cooled plate, and a bead die. The water-cooled plate and the bead die are laboratory-scale experimental setups designed to replicate the hot stamping/die quenching process.
Technical Paper

Effect of Fiber Orientation on the Mechanical Properties of Long Glass Fiber Reinforced (LGFR) Composites

2014-04-01
2014-01-1049
Long glass fiber reinforced (LGFR) composites have been widely used in automotive industry to reduce vehicle weight and maintain relatively high mechanical performances. Due to the injection molding process, the distribution of fiber orientations varies at different locations and through the panel thickness, resulting in anisotropic and non-uniform mechanical properties. The current practice of computer modeling of these materials is generally using isotropic properties adjusted by a certain scale factor. The effect of fiber orientation is not carefully considered due to the complexity of fiber orientation distribution in the LGFR parts. The purpose of this paper is to identify key factors affecting vehicle attribute performances where LGFR composites are used; and provide an efficient way for accurate CAE modeling of LGFR composites. In this study, tensile coupons cut from a simple geometric injection molded plaque are tested.
Technical Paper

A Life Cycle Assessment of Natural Fiber Reinforced Composites in Automotive Applications

2014-04-01
2014-01-1959
Automakers have the opportunity to utilize bio-based composite materials to lightweight cars while replacing conventional, nonrenewable resource materials. In this study, Life Cycle Assessment (LCA) is used to understand the potential benefits and tradeoffs associated with the implementation of bio-based composite materials in automotive component production. This cradle-to-grave approach quantifies the fiber and resin production as well as material processing, use, and end of life for both a conventional glass-reinforced polypropylene component as well as a cellulose-reinforced polypropylene component. The comparison is calculated for an exterior component on a high performance vehicle. The life cycle primary energy consumption and global warming potential (GWP) are evaluated. Reduced GWP associated with the alternative component are due to the use of biomass as process energy and carbon sequestration, in addition to the alternative material component's lightweighting effect.
Technical Paper

Outside-Engine Wear Study of Ceramic Coated Cylinder Wall Tribo-System

2014-04-01
2014-01-0958
This research focuses on study of feasibility of using ceramic oxide coatings on the cylinder wall of hypoeutectic aluminum silicon alloy engine blocks. Coatings are achieved in an aqueous electrolytic bath and composed of both alpha and gamma phases of Al2O3 and have shown promising wear resistance. Composition and acidity level of the electrolyte creates a variation of surface roughness, coating hardness and thickness which has direct influence on the wear behavior of the sliding surfaces. The effect of load bearing and coating morphology on coefficient of friction was studied. SEM images of the substrate showed no predominant wear behavior or delamination. Coefficient of friction and wear rate were also measured. This study shows the importance of surface structure on oil retention and wear rate. Coarser coatings can be desirable under starved oil condition since they show lower coefficient of friction.
Journal Article

In-Vehicle Driver State Detection Using TIP-II

2014-04-01
2014-01-0444
A transportable instrumentation package to collect driver, vehicle and environmental data is described. This system is an improvement on an earlier system and is called TIP-II [13]. Two new modules were designed and added to the original system: a new and improved physiological signal module (PH-M) replaced the original physiological signals module in TIP, and a new hand pressure on steering wheel module (HP-M) was added. This paper reports on exploratory tests with TIP-II. Driving data were collected from ten driver participants. Correlations between On-Board-Diagnostics (OBD), video data, physiological data and specific driver behavior such as lane departure and car following were investigated. Initial analysis suggested that hand pressure, skin conductance level, and respiration rate were key indicators of lane departure lateral displacement and velocity, immediately preceding lane departure; heart rate and inter-beat interval were affected during lane changes.
Technical Paper

Methodology for Determining the Process of Riveting Brake Linings for Heavy Commercial Vehicles

2013-05-15
2013-36-0029
During the development of a new friction material, besides the interface between lining/drum is also fundamental take in account all aspects involving the attachment of the linings on the brake shoes. This paper presents an optimization approach to the development and manufacturing parameters of brake linings, applied on medium and heavy duty commercial vehicles, aiming to assure the correct specification of the riveted joint clamp forces. These evaluations were conducted based on the quality tools documents and the theoretical aspects of the product usage as well as the modeling of key elements of the referred mechanism throughout various known applications. A calculation methodology was developed based on brake geometry, its generated forces and braking reactions required for each vehicle family.
Technical Paper

Restoring and Upgrading of a Ford Motor Company Reverberation Room Test Suite

2013-05-13
2013-01-1960
This paper presents the upgrades and improvements needed to bring an old and seldom used reverberation room test suite up to current standards. The upgrades and improvements included eliminating a below-floor pit that was open to the reverberation room, improving the acoustical diffusion within the room, enlarging the opening between the reverberation room and an adjacent anechoic chamber, renovating the anechoic receiving chamber, constructing an innovative sound transmission loss test fixture, and installing of a high power reverberation room sound system.
Journal Article

Derivation of Effective Strain-Life Data, Crack Closure Parameters and Effective Crack Growth Data from Smooth Specimen Fatigue Tests

2013-04-08
2013-01-1779
Small crack growth from notches under variable amplitude loading requires that crack opening stress be followed on a cycle by cycle basis and taken into account in making fatigue life predictions. The use of constant amplitude fatigue life data that ignores changes in crack opening stress due to high stress overloads in variable amplitude fatigue leads to non-conservative fatigue life predictions. Similarly fatigue life predictions based on small crack growth calculations for cracks growing from flaws in notches are non-conservative when constant amplitude crack growth data are used. These non-conservative predictions have, in both cases, been shown to be due to severe reductions in fatigue crack closure arising from large (overload or underload) cycles in a typical service load history.
Technical Paper

Sustainable Control System Development in Tomorrow's Vehicles: Technology Leadership Brief

2012-10-08
2012-01-9004
The tremendous growth of complexity in automotive control system electronics in the past 30 years has driven the industry to employ ever more advanced development techniques, ranging from formally managing functional architecture to employing more sophisticated functional safety development processes. The industry now finds itself facing emerging trends that will include more vehicle electrification, connectivity, personalization, and automation. Contextual and location awareness will also play larger roles. In light of these trends, vehicle control development processes will need to continue to evolve. This paper will explore some of the challenges that automakers will face as they move to incorporate these new technologies.
X