Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Effect of North American Certification Test Fuels on Emissions from On-Road Motorcycles

2021-09-21
2021-01-1225
Chassis dynamometer tests were conducted on three Class III on-highway motorcycles produced for the North American market and equipped with advanced emission control technologies in order to inform emissions inventories and compare the impacts of existing Tier 2 (E0) fuel with more market representative Tier 3 and LEV III certification fuels with 10% ethanol. For this study, the motorcycles were tested over the US Federal Test Procedure (FTP) and the World Motorcycle Test Cycle (WMTC) certification test cycles as well as a sample of real-world motorcycle driving informally referred to as the Real World Driving Cycle (RWDC). The primary interest was to understand the emissions changes of the selected motorcycles with the use of certification fuels containing 10% ethanol compared to 0% ethanol over the three test cycles.
Technical Paper

Evaluating the Performance of a Conventional and Hybrid Bus Operating on Diesel and B20 Fuel for Emissions and Fuel Economy

2020-04-14
2020-01-1351
With ongoing concerns about the elevated levels of ambient air pollution in urban areas and the contribution from heavy-duty diesel vehicles, hybrid electric vehicles are considered as a potential solution as they are perceived to be more fuel efficient and less polluting than their conventional engine counterparts. However, recent studies have shown that real-world emissions may be substantially higher than those measured in the laboratory, mainly due to operating conditions that are not fully accounted for in dynamometer test cycles. At the U.S. EPA National Fuel and Vehicle Emissions Laboratory (NVFEL) the in-use criteria emissions and energy efficiency of heavy-duty class 8 vehicles (up to 36280 kg) can be evaluated under controlled conditions in the heavy-duty chassis dynamometer test.
Technical Paper

Motor Vehicle Emission Control Quality Monitoring for On-Road Driving: Dynamic Signature Recognition of NOx & NH3 Emissions

2020-04-14
2020-01-0372
Motor vehicle emission testing during on-road driving is important to assess a vehicle’s exhaust emission control design, its compliance with Federal regulations and its impact on air quality. The U.S. Environmental Protection Agency (EPA) has been developing new approaches to screen the characteristics of vehicle dynamic emission control behaviors (its operating signature) while driving both on-road and on-dynamometer. The so-called “signature device” used for this testing is equipped with an O2/NOx sensor, thermocouple and GPS to record dynamic exhaust NOx concentration, air fuel ratio-controlled tailpipe lambda (λ), tailpipe temperature and vehicle speed (acceleration). In the early EPA research, signature screening was used to characterize a vehicle’s PCM control behaviors (cause/effect bijectivity), which help distinguish operation in normal control state-space and abnormal state-space.
Journal Article

Using Transmission Data to Isolate Individual Losses in Coastdown Road Load Coefficients

2020-04-14
2020-01-1064
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, the National Vehicle Fuels and Emissions Laboratory has benchmarked multiple transmissions to determine their efficiency during operation. The benchmarking included a modified “coastdown test,” which measures transmission output drag as a function of speed while in neutral. The transmission drag data can be represented as a second-order expression, like that used for vehicle coastdown test results, as F0 + F1V + F2V2, where V is the vehicle velocity. When represented in this fashion, the relationships among the three coefficients were found to be highly predictable. The magnitude of these coefficients can be quite large, and for some tested transmissions the deviation between the quadratic regression and the measured drag at individual velocities can be significant.
Technical Paper

Limitations of Sector Mesh Geometry and Initial Conditions to Model Flow and Mixture Formation in Direct-Injection Diesel Engines

2019-04-02
2019-01-0204
Sector mesh modeling is the dominant computational approach for combustion system design optimization. The aim of this work is to quantify the errors descending from the sector mesh approach through three geometric modeling approaches to an optical diesel engine. A full engine geometry mesh is created, including valves and intake and exhaust ports and runners, and a full-cycle flow simulation is performed until fired TDC. Next, an axisymmetric sector cylinder mesh is initialized with homogeneous bulk in-cylinder initial conditions initialized from the full-cycle simulation. Finally, a 360-degree azimuthal mesh of the cylinder is initialized with flow and thermodynamics fields at IVC mapped from the full engine geometry using a conservative interpolation approach. A study of the in-cylinder flow features until TDC showed that the geometric features on the cylinder head (valve tilt and protrusion into the combustion chamber, valve recesses) have a large impact on flow complexity.
Technical Paper

Real-World Emission Modeling and Validations Using PEMS and GPS Vehicle Data

2019-04-02
2019-01-0757
Portable Emission Measurement Systems (PEMS) are used by the U.S. Environmental Protection Agency (EPA) to measure gaseous and particulate mass emissions from vehicles in normal, in-use, on-the-road operation to support many of its programs, including assessing mobile source emissions compliance, emissions factor assessment for in-use fleet modeling, and collection of in-use vehicle operational data to support vehicle simulation modeling programs. This paper discusses EPA’s use of Global Positioning System (GPS) measured altitude data and electronically logged vehicle speed data to provide real-world road grade data for use as an input into the Gamma Technologies GT-DRIVE+ vehicle model. The GPS measured altitudes and the CAN vehicle speed data were filtered and smoothed to calculate the road grades by using open-source Python code and associated packages.
Journal Article

Benchmarking a 2018 Toyota Camry 2.5-Liter Atkinson Cycle Engine with Cooled-EGR

2019-04-02
2019-01-0249
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a 2018 Toyota Camry A25A-FKS 4-cylinder, 2.5-liter, naturally aspirated, Atkinson Cycle engine with cooled exhaust gas recirculation (cEGR) was benchmarked. The engine was tested on an engine dynamometer with and without its 8-speed automatic transmission, and with the engine wiring harness tethered to a complete vehicle parked outside of the test cell. Engine and transmission torque, fuel flow, key engine temperatures and pressures, onboard diagnostics (OBD) data, and Controller Area Network (CAN) bus data were recorded. This paper documents the test results under idle, low, medium, and high load engine operation. Motoring torque, wide open throttle (WOT) torque and fuel consumption are measured during transient operation using both EPA Tier 2 and Tier 3 test fuels.
Technical Paper

Predictive GT-Power Simulation for VNT Matching on a 1.6 L Turbocharged GDI Engine

2018-04-03
2018-01-0161
The thermal efficiency benefits of low-pressure (LP) exhaust gas recirculation (EGR) in spark-ignition engine combustion are well known. One of the greatest barriers facing adoption of LP-EGR for high power-density applications is the challenge of boosting. Variable nozzle turbines (VNTs) have recently been developed for gasoline applications operating at high exhaust gas temperatures (EGTs). The use of a single VNT as a boost device may provide a lower-cost option compared to two-stage boosting systems or 48 V electronic boost devices for some LP-EGR applications. A predictive model was created based on engine testing results from a 1.6 L turbocharged gasoline direct injection (GDI) engine [1]. The model was tuned so that it predicted burn-rates and end-gas knock over an engine operating map with varying speeds, loads, EGR rates and fuel types.
Technical Paper

Characterization of GHG Reduction Technologies in the Existing Fleet

2018-04-03
2018-01-1268
By almost any definition, technology has penetrated the U.S. light-duty vehicle fleet significantly in conjunction with the increased stringency of fuel economy and GHG emissions regulations. The physical presence of advanced technology components provides one indication of the efforts taken to reduce emissions, but that alone does not provide a complete measure of the benefits of a particular technology application. Differences in the design of components, the materials used, the presence of other technologies, and the calibration of controls can impact the performance of technologies in any particular implementation. The effectiveness of a technology for reducing emissions will also be influenced by the extent to which the technologies are applied towards changes in vehicle operating characteristics such as improved acceleration, or customer features that may offset mass reduction from the use of lightweight materials.
Technical Paper

Evaluation of Emerging Technologies on a 1.6 L Turbocharged GDI Engine

2018-04-03
2018-01-1423
Low-pressure loop exhaust gas recirculation (LP- EGR) combined with higher compression ratio, is a technology package that has been a focus of research to increase engine thermal efficiency of downsized, turbocharged gasoline direct injection (GDI) engines. Research shows that the addition of LP-EGR reduces the propensity to knock that is experienced at higher compression ratios [1]. To investigate the interaction and compatibility between increased compression ratio and LP-EGR, a 1.6 L Turbocharged GDI engine was modified to run with LP-EGR at a higher compression ratio (12:1 versus 10.5:1) via a piston change. This paper presents the results of the baseline testing on an engine run with a prototype controller and initially tuned to mimic an original equipment manufacturer (OEM) baseline control strategy running on premium fuel (92.8 anti-knock index).
Technical Paper

Testing and Benchmarking a 2014 GM Silverado 6L80 Six Speed Automatic Transmission

2017-11-17
2017-01-5020
As part of its midterm evaluation of the 2022-2025 light-duty greenhouse gas (GHG) standards, the Environmental Protection Agency (EPA) has been acquiring fuel efficiency data from testing of recent engines and vehicles. The benchmarking data are used as inputs to EPA’s Advanced Light Duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model created to estimate GHG emissions from light-duty vehicles. For complete powertrain modeling, ALPHA needs both detailed engine fuel consumption maps and transmission efficiency maps. EPA’s National Vehicle and Fuels Emissions Laboratory has previously relied on contractors to provide full characterization of transmission efficiency maps. To add to its benchmarking resources, EPA developed a streamlined more cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to broadly characterize transmissions within ALPHA.
Technical Paper

Potential Fuel Economy Improvements from the Implementation of cEGR and CDA on an Atkinson Cycle Engine

2017-03-28
2017-01-1016
EPA has been benchmarking engines and transmissions to generate inputs for use in its technology assessments supporting the Midterm Evaluation of EPA’s 2017-2025 Light-Duty Vehicle greenhouse gas emissions assessments. As part of an Atkinson cycle engine technology assessment of applications in light-duty vehicles, cooled external exhaust gas recirculation (cEGR) and cylinder deactivation (CDA) were evaluated. The base engine was a production gasoline 2.0L four-cylinder engine with 75 degrees of intake cam phase authority and a 14:1 geometric compression ratio. An open ECU and cEGR hardware were installed on the engine so that the CO2 reduction effectiveness could be evaluated. Additionally, two cylinders were deactivated to determine what CO2 benefits could be achieved. Once a steady state calibration was complete, two-cycle (FTP and HwFET) CO2 reduction estimates were made using fuel weighted operating modes and a full vehicle model (ALPHA) cycle simulation.
Journal Article

Fleet-Level Modeling of Real World Factors Influencing Greenhouse Gas Emission Simulation in ALPHA

2017-03-28
2017-01-0899
The Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of internal energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been updated utilizing newly acquired data from model year 2013-2016 engines and vehicles. Simulations conducted with ALPHA provide data on the effectiveness of various GHG reduction technologies, and reveal synergies that exist between technologies. The ALPHA model has been validated against a variety of vehicles with different powertrain configurations and GHG reduction technologies.
Journal Article

Cycle-Average Heavy-Duty Engine Test Procedure for Full Vehicle Certification - Numerical Algorithms for Interpreting Cycle-Average Fuel Maps

2016-09-27
2016-01-8018
In June of 2015, the Environmental Protection Agency and the National Highway Traffic Safety Administration issued a Notice of Proposed Rulemaking to further reduce greenhouse gas emissions and improve the fuel efficiency of medium- and heavy-duty vehicles. The agencies proposed that vehicle manufacturers would certify vehicles to the standards by using the agencies’ Greenhouse Gas Emission Model (GEM). The agencies also proposed a steady-state engine test procedure for generating GEM inputs to represent the vehicle’s engine performance. In the proposal the agencies also requested comment on an alternative engine test procedure, the details of which were published in two separate 2015 SAE Technical Papers [1, 2]. As an alternative to the proposed steady-state engine test procedure, these papers presented a cycle-average test procedure.
Technical Paper

Modeling of a Conventional Mid-Size Car with CVT Using ALPHA and Comparable Powertrain Technologies

2016-04-05
2016-01-1141
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles [1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a MATLAB/Simulink based desktop application. The ALPHA model has been updated from the previous version to include more realistic vehicle behavior and now includes internal auditing of all energy flows in the model [2]. As a result of the model refinements and in preparation for the mid-term evaluation (MTE) of the 2022-2025 LD GHG emissions standards, the model is being revalidated with newly acquired vehicle data.
Technical Paper

Air Flow Optimization and Calibration in High-Compression-Ratio Naturally Aspirated SI Engines with Cooled-EGR

2016-04-05
2016-01-0565
As part of the U.S. Environmental Protection Agency (U.S. EPA) “Midterm Evaluation of Light-duty Vehicle Standards for Model Years 2022-2025 [1]”, the U.S. EPA is evaluating engines and assessing the effectiveness of future engine technologies for reducing CO2 emissions. Such assessments often require significant development time and resources in order to optimize intake and exhaust cam variable valve timing (VVT), exhaust gas recirculation (EGR) flow rates, and compression ratio (CR) changes. Mazda SkyActiv-G spark-ignition (SI) engines were selected by EPA for an internal engine development program based upon their high geometric compression ratio (14:1 in Europe and Japan, 13:1 in North America) and their use of a flexible valve train configuration with electro-mechanical phasing control on the intake camshaft. A one-dimensional GT-Power engine model was calibrated and validated using detailed engine dynamometer test data [2] from 2.0L and 2.5L versions of the SkyActiv-G engine.
Technical Paper

Modeling the Effects of Transmission Gear Count, Ratio Progression, and Final Drive Ratio on Fuel Economy and Performance Using ALPHA

2016-04-05
2016-01-1143
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles [1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a MATLAB/Simulink based desktop application. The ALPHA model has been updated from the previous version to include more realistic vehicle behavior and now includes internal auditing of all energy flows in the model [2]. As a result of the model refinements and in preparation for the mid-term evaluation (MTE) of the 2022-2025 LD GHG emissions standards, the model is being revalidated with newly acquired vehicle data. This paper presents an analysis of the effects of varying the absolute and relative gear ratios of a given transmission on carbon emissions and performance.
Journal Article

NVH Development of the Ford 2.7L 4V-V6 Turbocharged Engine

2015-06-15
2015-01-2288
A new turbocharged 60° 2.7L 4V-V6 gasoline engine has been developed by Ford Motor Company for both pickup trucks and car applications. This engine was code named “Nano” due to its compact size; it features a 4-valves DOHC valvetrain, a CGI cylinder block, an Aluminum ladder, an integrated exhaust manifold and twin turbochargers. The goal of this engine is to deliver 120HP/L, ULEV70 emission, fuel efficiency improvements and leadership level NVH. This paper describes the upfront design and optimization process used for the NVH development of this engine. It showcases the use of analytical tools used to define the critical design features and discusses the NVH performance relative to competitive benchmarks.
Journal Article

Instrumentation, Acquisition and Data Processing Requirements for Accurate Combustion Noise Measurements

2015-06-15
2015-01-2284
The higher cylinder peak pressure and pressure rise rate of modern diesel and gasoline fueled engines tend to increase combustion noise while customers demand lower noise. The multiple degrees of freedom in engine control and calibration mean there is more scope to influence combustion noise but this must first be measured before it can be balanced with other attributes. An efficient means to realize this is to calculate combustion noise from the in-cylinder pressure measurements that are routinely acquired as part of the engine development process. This publication reviews the techniques required to ensure accurate and precise combustion noise measurements. First, the dynamic range must be maximized by using an analogue to digital converter with sufficient number of bits and selecting an appropriate range in the test equipment.
Technical Paper

Sound Package Design for Lightweight Vehicles

2015-06-15
2015-01-2343
OEMs are racing to develop lightweight vehicles as government regulations now mandate automakers to nearly double the average fuel economy of new cars and trucks by 2025. Lightweight materials such as aluminum, magnesium and carbon fiber composites are being used as structural members in vehicle body and suspension components. The reduction in weight in structural panels increases noise transmission into the passenger compartment. This poses a great challenge in vehicle sound package development since simply increasing weight in sound package components to reduce interior noise is no longer an option [1]. This paper discusses weight saving approaches to reduce noise level at the sources, noise transmission paths, and transmitted noise into the passenger compartment. Lightweight sound package materials are introduced to treat and reduce airborne noise transmission into multi-material lightweight body structure.
X