Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Comparison of the Mid-Size Male THOR and Hybrid III ATDs in Vehicle Frontal Crash Tests

2023-06-27
2022-22-0005
In order to evaluate the THOR-50M as a front impact Anthropomorphic Test Device (ATD) for vehicle safety design, the ATD was compared to the H3-50M in matching vehicle crash tests for 20 unique vehicle models from 2 vehicle manufacturers. For the belted driver condition, a total of fifty-four crash tests were investigated in the 56.3 km/h (35 mph) front rigid barrier impact condition. Four more tests were compared for the unbelted driver and right front passenger at 40.2 km/h (25 mph) in the flat frontal and 30-degree right oblique rigid barrier impact conditions. The two ATDs were also evaluated for their ability to predict injury risk by comparing their fleet average injury risk to Crash Investigation Sampling System (CISS) accident data for similar conditions. The differences in seating position and their effect on ATD responses were also investigated.
Journal Article

Seat Belt Restraint Evidence Generated by Unrestrained Occupant Interaction in a Rollover

2022-03-29
2022-01-0846
Assessment of the physical evidence on a seat belt restraint system provides one source of data for determining an occupant’s seat belt use or non-use during a motor vehicle crash. The evidence typically associated with loading from a restrained occupant has been extensively researched and documented in the literature. However, evidence of loading to the restraint system can also be generated by other means, including the interaction of an unrestrained occupant with a stowed restraint system. The present study evaluates physical evidence on multiple stowed restraint systems generated via interaction with unrestrained occupants during a full-scale dolly rollover crash test of a large multiple passenger van. Unbelted anthropomorphic test devices (ATDs) were positioned in the driver and right front passenger seats and in all designated seating positions in the third, fourth, and fifth rows.
Technical Paper

Effect of Occupant Weight and Initial Position in Low-to-High Speed Rear Sled Tests with Older and Modern Seats

2021-04-06
2021-01-0918
The average body weight of the US population has increased over time. This study investigates the effect of increasing weight on seat and occupant responses in 15-18 km/h and 42 km/h rear sled tests. The effect of initial occupant posture is also discussed. Seven tests were conducted with lap-shoulder belted ATDs (anthropometric test device) placed on older and modern driver seats. Four tests were conducted with a 50th percentile male Hybrid III, two with 95th percentile male Hybrid III and one with a BioRID. The ATDs were ballasted to represent a Class I or II obese occupant in three tests. The tests were matched by seat model and sled velocity. The effect of occupant weight was assessed in three matches. The results indicated an increase in seatback deflection with increasing occupant weight.
Technical Paper

Effect of ATD Size, Vehicle Interior and Restraint Misuse on Second-Row Occupant Kinematics in Frontal Sled Tests

2021-04-06
2021-01-0914
Interest in rear-seat occupant safety has increased in recent years. Information relevant to rear-seat occupant interior space and kinematics are needed to evaluate injury risks in real-world accidents. This study was conducted to first assess the effect of size and restraint conditions, including belt misuse, on second-row occupant kinematics and to then document key clearance measurements for an Anthropomorphic Test Device (ATD) seated in the second row in modern vehicles from model years 2015-2020. Twenty-two tests were performed with non-instrumented ATDs; three with a 5th percentile female Hybrid III, 10 tests with a 10-year-old Hybrid III, and 9 tests with a 6-year-old Hybrid III. Test conditions included two sled bucks (mid-size car and sport utility vehicle (SUV)), two test speeds (56 and 64 km/h), and various restraint configurations (properly restrained and improperly restrained configurations). Head and knee trajectories were assessed.
Journal Article

Assessment of the 50th Hybrid III Responses in Blunt Rear Impacts to the Torso

2021-04-06
2021-01-0919
Blunt impacts to the back of the torso can occur in vehicle crashes due to interaction with unrestrained occupants, or cargo in frontal crashes, or intrusion in rear crashes, for example. Six pendulum tests were conducted on the back of an instrumented 50th percentile male Hybrid III ATD (Anthropomorphic Test Device) to determine kinematic and biomechanical responses. The impact locations were centered with the top of a 15-cm diameter impactor at the T1 or at T6 level of the thoracic spine. The impact speed varied from 16 to 24 km/h. Two 24 km/h tests were conducted at the T1 level and showed repeatability of setup and ATD responses. The 16 and 24 km/h tests at T1 and T6 were compared. Results indicated greater head rotation, neck extension moments and neck shear forces at T1 level impacts. For example, lower neck extension was 2.6 times and 3.8 times greater at T1 versus T6 impacts at 16 and 24 km/h, respectively.
Technical Paper

Hardware-in-the-Loop, Traffic-in-the-Loop and Software-in-the-Loop Autonomous Vehicle Simulation for Mobility Studies

2020-04-14
2020-01-0704
This paper focuses on finding and analyzing the relevant parameters affecting traffic flow when autonomous vehicles are introduced for ride hailing applications and autonomous shuttles are introduced for circulator applications in geo-fenced urban areas. For this purpose, different scenarios have been created in traffic simulation software that model the different levels of autonomy, traffic density, routes, and other traffic elements. Similarly, software that specializes in vehicle dynamics, physical limitations, and vehicle control has been used to closely simulate realistic autonomous vehicle behavior under such scenarios. Different simulation tools for realistic autonomous vehicle simulation and traffic simulation have been merged together in this paper, creating a realistic simulator with Hardware-in-the-Loop (HiL), Traffic-in-the-Loop (TiL), and Software in-the-Loop (SiL) simulation capabilities.
Technical Paper

An Investigation into the Traction and Anti-Lock Braking System Control Design

2020-04-14
2020-01-0997
Wheel slip control is crucial to active safety control systems such as Traction Control System (TCS) and Anti-lock Braking System (ABS) that ensure vehicle safety by maintaining the wheel slip in a stable region. For this reason, a wide variety of control methods has been implemented by both researchers and in the industry. Moreover, the use of new electro-hydraulic or electro-mechanical brakes, and in-wheel electric motors allow for a more precise wheel slip control, which should further improve the vehicle dynamics and safety. In this paper, we compare two methods for wheel slip control: a loop-shaping Youla parametrization method, and a sliding mode control method. Each controller is designed based on a simple single wheel system. The benefits and drawbacks of both methods are addressed. Finally, the performance and stability robustness of each controller is evaluated based on several metrics in a simulation using a high-fidelity vehicle model with several driving scenarios.
Technical Paper

Evaluation of Laminated Side Glazing and Curtain Airbags for Occupant Containment in Rollover

2020-04-14
2020-01-0976
By their nature as chaotic, high-energy events, rollovers pose a high risk of injury to unrestrained occupants, in particular through exposure to projected perimeter contact and ejection. While seat belts have long been accepted as a highly effective means of retaining and restraining occupants in rollover crashes, it has been suggested that technologies such as laminated safety glazing or rollover-activated side curtain airbags (RSCAs) could alternatively provide effective occupant containment. In this study, a full-scale dolly rollover crash test was performed to assess the occupant containment capability of laminated side glazing and RSCAs in a high-severity rollover event. This allowed for the analysis of unrestrained occupant kinematics during interaction with laminated side glazing and RSCAs and evaluation of failure modes and limitations of laminated glazing and RSCAs as they relate to partial and complete ejection of unrestrained occupants.
Technical Paper

FRED II Quasistatic Seat Testing Rearward: An Improved Method Based on the SAE H-point Manikin

2019-04-02
2019-01-1032
Various methods have been used to load a seat in the rear direction, including FMVSS 207, assorted body blocks and QST (quasistatic seat test). However, each method lacks some critical aspect of occupant loading of the seat or is too complex for routine development work. A new method is presented to determine the strength and energy transfer of a seat to an occupant in rear impacts that reflects how an occupant interacts with the seat in a rear impact. A metal-cast H-point manikin, called FRED II, was modified to support a loading bar and was pulled rearward into the seatback by a hydraulic ram. The force and displacement of the loading and the inboard and outboard seatback angle were measured. The response of the seat was recorded by video. The moment about the recliner pivot at peak force was determined by aligning the center of the recliner in side views of the seat position initially and at peak load.
Technical Paper

Acetabulum Injury Investigation of Proposed US-NCAP in OI Mode

2018-04-03
2018-01-0538
In December 2015, the National Highway Traffic Safety Administration (NHTSA) published a Request for Comments on proposed changes to the New Car Assessment Program (NCAP). One potential change is the addition of a frontal oblique impact (OI) crash test using the Test Device for Human Occupant Restraint (THOR). The resultant acetabulum force, which is a unique and specifically defined in the THOR dummy, will be considered as a new injury metric. In this study, the results of ten OI tests conducted by NHTSA on current production mid-sized vehicles were investigated. Specifically, the test data was used to study the lower extremity kinematics for the driver and front passenger THOR dummies. It was found that the acetabulum force patterns varied between the driver and passenger and between the left leg and the right leg of the occupants. The maximum acetabulum force can occur either on the left side or right side of a driver or a front passenger in an OI event.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part III: Development of Transfer Functions

2018-04-03
2018-01-1444
An understanding of stiffness characteristics of different body regions, such as thorax, abdomen and pelvis of ES-2re and SID-IIs dummies under controlled laboratory test conditions is essential for development of both compatible performance targets for countermeasures and occupant protection strategies to meet the recently updated FMVSS214, LINCAP and IIHS Dynamic Side Impact Test requirements. The primary purpose of this study is to determine the transfer functions between the ES-2re and SID-IIs dummies for different body regions under identical test conditions using flat rigid wall sled tests. The experimental set-up consists of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and femur/knee impacting a stationary dummy seated on a rigid low friction seat at a pre-determined velocity.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs – Part II: SID-IIs

2018-04-03
2018-01-1448
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part I: ES-2re

2018-04-03
2018-01-1449
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Technical Paper

A Novel Vehicle Glove Box Design for Mitigating Lower Leg Dummy Responses in a Vehicle Frontal Impact

2018-04-03
2018-01-1326
Crash safety is a complex engineering field wherein a good understanding of energy attenuation capabilities due to an impact of various components and between different/adjacent components in the context of the vehicle environment is imperative. During a frontal impact of the vehicle, an occupant’s lower extremity tends to move forward and could impact one or more components of the instrument panel assembly. A glove box component design may have an influence on occupant’s lower extremity injuries when exposed to the occupant’s knees during a frontal impact. The objective of the present numerical study was to develop a novel glove box design with energy absorbing ribs and then comparing the results with the glove box with a knee airbag (KAB) design to help reduce anthropomorphic test device (ATD) lower leg responses.
Technical Paper

Experimental Investigation on the Influence of Pressure Wheel Design on Heat Dissipation for a Laser Robotic End of Arm Tooling

2018-04-03
2018-01-1235
The initiative of this paper is focused on improving the heat dissipation from the pressure wheel of a laser welding assembly in order to achieve a longer period of use. The work examines the effects of different geometrical designs on the thermal performance of pressure wheel assembly during a period of cooling time. Three disc designs were manufactured for testing: Design 1 – a plain wheel, Design 2 – a pierced wheel, and Design 3 – a wheel with ventilating vanes. All of the wheels were made of carbon steel. The transient thermal reaction were compared. The experimental results indicate that the ventilated wheel cools down faster with the convection in the ventilated channels, while the solid plain wheel continues to possess higher temperatures. A comparison among the three different designs indicates that the Design 3 has the best cooling performance.
Technical Paper

The Causal Relationship between Wheel Rim Gouging Forces on Roadway Surfaces and Rollover Crashes

2018-04-03
2018-01-0556
There has been a general consensus in the scientific literature that a rim gouging, not scraping, into a roadway surface generates very high forces which can cause a vehicle to overturn in some situations. However, a paper published in 2004 attempts to minimize the forces created during wheel rim gouging and the effect on vehicle rollover. This paper relied largely on heavily filtered lateral acceleration data and discounted additional test runs by the authors and NHTSA that did not support the supposed conclusions. This paper will discuss the effect of rim gouging using accepted scientific methods, including full vehicle testing where vehicle accelerations were measured during actual rim gouging events and static testing of side forces exerted by wheels mounted on a moving test fixture. The data analyzed in this paper clearly shows that forces created by rim gouges on pavement can be thousands of Newtons and can contribute to vehicle rollover.
Technical Paper

A CAE Study on Side Doors Inner Panel Deflection under Glass Stall Up Forces

2017-11-07
2017-36-0205
Not only well-functioning, but also the way operating everyday items "feel", gauges costumer perception of an automobile robustness. To prevent costumer dissatisfaction with door trim panel movement when operating power windows, deflections must be kept small. Deflections of inner panel are seen through trim panel and are responsible for giving a flimsy idea of the door. In this paper, inner panel movement for a fully stamped door in full glass stall up position is analyzed. Through CAE analyses, inner panel behavior was compared, considering different types of reinforcement for belt region.
Technical Paper

Steering Wheel Leather Peeling Off Failure Investigation and Analysis

2017-03-28
2017-01-0320
Customer expectations for improved performance, comfort levels, and aesthetics have led automobile manufacturers to use leather for seats, steering wheels, instrument panels, door panels, and other components. To increase the drivers’ comfort level, there is always a soft pad layer applied under the leather in the steering wheel. This paper will describe a potential failure mode that occurs when materials migrate from one material to another material in multilayer material constructions. In this case dioctyl phthalate migrated from the soft pad layer into the leather surface, affecting the durability performance of the leather coating. This paper describes the failure and demonstrates an effective test methodology to test for this failure during the materials and components validation process.
Technical Paper

An Advanced Yaw Stability Control System

2017-03-28
2017-01-1556
This paper presents an advanced yaw stability control system that uses a sensor set including an inertial measurement unit to sense the 6 degrees-of-freedom motions of a vehicle. The full degree of the inertial measurement unit improves and enhances the vehicle motion state estimation over the one in the traditional electronic stability controls. The addition of vehicle state estimation leads to the performance refinement of vehicle stability control that can improve performance in certain situations. The paper provides both detailed system description and test results showing the effectiveness of the system.
Technical Paper

An Indirect Tire Health Monitoring System Using On-board Motion Sensors

2017-03-28
2017-01-1626
This paper proposes a method to make diagnostic/prognostic judgment about the health of a tire, in term of its wear, using existing on-board sensor signals. The approach focuses on using an estimate of the effective rolling radius (ERR) for individual tires as one of the main diagnostic/prognostic means and it determines if a tire has significant wear and how long it can be safely driven before tire rotation or tire replacement are required. The ERR is determined from the combination of wheel speed sensor (WSS), Global Positioning sensor (GPS), the other motion sensor signals, together with the radius kinematic model of a rolling tire. The ERR estimation fits the relevant signals to a linear model and utilizes the relationship revealed in the magic formula tire model. The ERR can then be related to multiple sources of uncertainties such as the tire inflation pressure, tire loading changes, and tire wear.
X