Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Circumferential Variation of Noise at the Blade-Pass Frequency in a Turbocharger Compressor with Ported Shroud

2021-08-31
2021-01-1044
The ported shroud casing treatment for turbocharger compressors offers a wider operating flow range, elevated boost pressures at low compressor mass flow rates, and reduced broadband whoosh noise in spark-ignition internal combustion engine applications. However, the casing treatment elevates tonal noise at the blade-pass frequency (BPF). Typical rotational speeds of compressors employed in practice push BPF noise to high frequencies, which then promote multi-dimensional acoustic wave propagation within the compressor ducting. As a result, in-duct acoustic measurements become sensitive to the angular location of pressure transducers on the duct wall. The present work utilizes a steady-flow turbocharger gas stand featuring a unique rotating compressor inlet duct to quantify the variation of noise measured around the duct at different angular positions.
Technical Paper

Surge Prediction in a Single Sequential Turbocharger (SST) Compressor Using Computational Fluid Dynamics

2019-06-05
2019-01-1490
The Single Sequential Turbocharger (SST) used in Ford’s 6.7L Scorpion Diesel is analyzed using Computational Fluid Dynamics (CFD) to draw conclusions about the compressor stability at low mass flows. The SST compressor concept consists of a double-sided wheel which flows in parallel fed by two separate inlets (front and rear), followed by a single vane-less diffuser, and a volute. CFD simulations for the full stage are performed at low mass flow rates Both, front and rear, sides have ported shroud casing-treatment (CT) in the inlet region. An objective of the analysis is to determine which side of the SST unit compressor (front or rear on the double-sided wheel) suffers flow break down first as the mass flow is reduced, and its impact on the overall stability of the SST compressor. Another objective is to better understand the interactions between the compressor inlet flow and the flow through the casing-treatment.
Journal Article

Turbocharger Centrifugal Compressor Casing Treatment for Improved BPF Noise Using Computational Fluid Dynamics

2019-06-05
2019-01-1484
The conventional ported shroud recirculation casing treatment elevates narrowband noise at blade pass frequency. A new ported shroud recirculating casing treatment was implemented in Ford’s 3.5L turbo gas engine as Noise Vibration and Harshness (NVH) counter measure to reduce whoosh (broadband flow noise) noise without elevating narrowband noise at blade pass frequency. The new ported shroud design incorporates holes between the main and secondary recirculating passage and a slight cross-sectional area reduction just upstream of the impeller. These design features reduce whoosh noise without elevating the first order and the sixth order tonal noise at blade pass frequency. The new ported shroud design decreases narrowband tonal noise sound pressure level by 3-6 dB in the low to mid flow region compared to the baseline design. Computational Fluid Dynamics (CFD) tools were used to develop this casing treatment design.
X