Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Developments of Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) Project

2022-03-29
2022-01-0341
The Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) is a project that developed structural commercial vehicle suspension components in high volume utilising hybrid materials and joining techniques to offer a viable lightweight production alternative to steel. Three components were selected for the project:- Front Subframe Front Lower Control Arm (FLCA) Rear Deadbeam Axle
Journal Article

Improving Keyhole Stability during Laser Welding of AA5xxx Alloys

2022-03-29
2022-01-0247
Laser welding of the magnesium-bearing AA5xxx aluminum alloys is often beset by keyhole instability, especially in the lap through joint configuration. This phenomenon is characterized by periodic collapse of the keyhole leaving large voids in the weld zone. In addition, the top surface can exhibit undercut and roughness. In full penetration welds, keyhole instability can also produce a spikey root and severe top surface concavity. These discontinuities could prevent a weld from achieving engineering specification compliance, pose a craftsmanship concern, or reduce the strength and fatigue performance of the weld. In the case of a full penetration weld, a spikey root could compromise part fit-up and corrosion protection, or damage adjacent sheet metal, wiring, interior components, or trim.
Technical Paper

Cast Magnesium Subframe Development - Bolt Load Retention

2021-04-06
2021-01-0274
A cast magnesium subframe was designed and manufactured for a C Class sedan to reduce weight and improve vehicle fuel economy. The magnesium subframe achieved 5 kg (32%) weight reduction from the equivalent steel subframe and met all the required structural performance targets. All the joints of the magnesium subframe were tested for bolt load retention. The tests were conducted with a temperature profile of 100°C to -30°C designed to investigate the creep behavior of the selected magnesium alloy AE44 under high stress.
Technical Paper

Effect of ATD Size, Vehicle Interior and Restraint Misuse on Second-Row Occupant Kinematics in Frontal Sled Tests

2021-04-06
2021-01-0914
Interest in rear-seat occupant safety has increased in recent years. Information relevant to rear-seat occupant interior space and kinematics are needed to evaluate injury risks in real-world accidents. This study was conducted to first assess the effect of size and restraint conditions, including belt misuse, on second-row occupant kinematics and to then document key clearance measurements for an Anthropomorphic Test Device (ATD) seated in the second row in modern vehicles from model years 2015-2020. Twenty-two tests were performed with non-instrumented ATDs; three with a 5th percentile female Hybrid III, 10 tests with a 10-year-old Hybrid III, and 9 tests with a 6-year-old Hybrid III. Test conditions included two sled bucks (mid-size car and sport utility vehicle (SUV)), two test speeds (56 and 64 km/h), and various restraint configurations (properly restrained and improperly restrained configurations). Head and knee trajectories were assessed.
Journal Article

Assessment of the 50th Hybrid III Responses in Blunt Rear Impacts to the Torso

2021-04-06
2021-01-0919
Blunt impacts to the back of the torso can occur in vehicle crashes due to interaction with unrestrained occupants, or cargo in frontal crashes, or intrusion in rear crashes, for example. Six pendulum tests were conducted on the back of an instrumented 50th percentile male Hybrid III ATD (Anthropomorphic Test Device) to determine kinematic and biomechanical responses. The impact locations were centered with the top of a 15-cm diameter impactor at the T1 or at T6 level of the thoracic spine. The impact speed varied from 16 to 24 km/h. Two 24 km/h tests were conducted at the T1 level and showed repeatability of setup and ATD responses. The 16 and 24 km/h tests at T1 and T6 were compared. Results indicated greater head rotation, neck extension moments and neck shear forces at T1 level impacts. For example, lower neck extension was 2.6 times and 3.8 times greater at T1 versus T6 impacts at 16 and 24 km/h, respectively.
Technical Paper

Corrosion Performance of a Magnesium Tower Brace

2021-04-06
2021-01-0276
This study reports the corrosion performance of three different coating strategies tested on an AE44 high performance magnesium strut tower brace used on the 2020 Ford Mustang Shelby GT500. The alloy was selected due to its improved structural performance at higher temperatures over conventional AM60B magnesium die castings. The first coating strategy used no pretreatment, conversion coating, or topcoat to gage the baseline corrosion performance of the uncoated alloy. The second coating strategy used a conventional pretreatment commonly used on AM60B alloy. The third used a ceramic-based conversion coating. A textured (stipple) powder coat was then applied to the two non-baseline parts over the pretreatment. All three coating strategies were then evaluated by comparing the corrosion performance after cyclic corrosion testing for 12 weeks using the Ford L-467 test.
Technical Paper

Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS)

2020-04-14
2020-01-0777
The Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) is a project to develop structural commercial vehicle suspension components in high volume utilising hybrid materials and joining techniques to offer a viable lightweight production alternative to steel. Three components are in scope for the project:- Front Subframe Front Lower Control Arm (FLCA) Rear Deadbeam Axle
Technical Paper

Calibration and Validation of GISSMO Damage Model for A 780-MPa Third Generation Advanced High Strength Steel

2020-04-14
2020-01-0198
To evaluate vehicle crash performance in the early design stages, a reliable fracture model is needed in crash simulations to predict material fracture initiation and propagation. In this paper, a generalized incremental stress state dependent damage model (GISSMO) in LS-DYNA® was calibrated and validated for a 780-MPa third generation advanced high strength steels (AHSS), namely 780 XG3TM steel that combines high strength and ductility. The fracture locus of the 780 XG3TM steel was experimentally characterized under various stress states including uniaxial tension, shear, plane strain and equi-biaxial stretch conditions. A process to calibrate the parameters in the GISSMO model was developed and successfully applied to the 780 XG3TM steel using the fracture test data for these stress states.
Technical Paper

Influence of Weld Lines on the Mechanical Properties of Talc Filled Polypropylene

2020-04-14
2020-01-1306
Weld lines can significantly reduce ultimate tensile strength (UTS) and fracture strain of talc filled polypropylene (PP). In this paper, two different injection molding tests were completed. First, an injection mold with triangular inserts was built to study the influence of meeting angles on material properties at the weld line region. Tensile samples were cut at different locations along the weld line on the injection molded plaques. The test results showed that both UTS and fracture strain increase when the sample locations are away from the insert. This trend is attributed to different meeting angles. Second, standard ISO tensile bars with and without weld line were injection molded to identify the size of the weld line affected zone. A FEA model was built in ABAQUS, where the tensile sample was divided into two different regions, the solid region and the weld line affected region.
Technical Paper

Full Body Car Analysis in the Time and Frequency Domains - Sheet, Spot and Seam Weld Fatigue Benchmark Studies

2020-04-14
2020-01-0195
The fatigue analysis of a full car body requires the sheet metal (sheet fatigue), spot welds (spot weld fatigue) and seam welds (seam weld fatigue) to be thoroughly evaluated for durability. Traditionally this has always been done in the time domain, but recently new frequency domain techniques are able to perform these tasks with numerous advantages. This paper will summarize the frequency domain process and then compare the results and performance against the more usual time domain process.
Technical Paper

One piece hot formed AB ring reinforcement

2018-09-03
2018-36-0022
The usage of Boron steel in the South American automotive industry has been increasing in recent years. Considering its high hardening properties, sheet metal parts can only be manufactured using a hot forming process, as compared to a conventional cold forming process; however, the hot stamping process offers the advantage to stamp a part in a single die vs. multiple dies using a regular cold stamping process. The main objective is to present the advantages of constructing the whole AB ring reinforcement out of Boron steel and made out of a single die, and no welding among the A pillar reinforcement, B Pillar reinforcement and rocker panel. This type of design has helped to achieve crash safety performance goals, enhance the structural characteristics of joints, improve dimensional control, reduce the number of welds, manage BIW overall weight and improve torsion rigidity.
Technical Paper

Experimental Investigation on the Influence of Pressure Wheel Design on Heat Dissipation for a Laser Robotic End of Arm Tooling

2018-04-03
2018-01-1235
The initiative of this paper is focused on improving the heat dissipation from the pressure wheel of a laser welding assembly in order to achieve a longer period of use. The work examines the effects of different geometrical designs on the thermal performance of pressure wheel assembly during a period of cooling time. Three disc designs were manufactured for testing: Design 1 – a plain wheel, Design 2 – a pierced wheel, and Design 3 – a wheel with ventilating vanes. All of the wheels were made of carbon steel. The transient thermal reaction were compared. The experimental results indicate that the ventilated wheel cools down faster with the convection in the ventilated channels, while the solid plain wheel continues to possess higher temperatures. A comparison among the three different designs indicates that the Design 3 has the best cooling performance.
Journal Article

Thermal Response of Aluminum Engine Block During Thermal Spraying of Bores: Comparison of FEA and Thermocouple Results

2017-03-28
2017-01-0451
Thermally sprayed coatings have used in place of iron bore liners in recent aluminum engine blocks. The coatings are steel-based, and are sprayed on the bore wall in the liquid phase. The thermal response of the block structure determines how rapidly coatings can be applied and thus the investment and floor space required for the operation. It is critical not to overheat the block to prevent dimensional errors, metallurgical damage, and thermal stress cracks. This paper describes an innovative finite element procedure for estimating both the substrate temperature and residual stresses in the coating for the thermal spray process. Thin layers of metal at a specified temperature, corresponding to the layers deposited in successive thermal spray torch passes, are applied to the substrate model, generating a heat flux into the block. The thickness, temperature, and application speed of the layers can be varied to simulate different coating cycles.
Technical Paper

Frequency FE-Based Weld Fatigue Life Prediction of Dynamic Systems

2017-03-28
2017-01-0355
In most aspects of mechanical design related to a motor vehicle there are two ways to treat dynamic fatigue problems. These are the time domain and the frequency domain approaches. Time domain approaches are the most common and most widely used especially in the automotive industries and accordingly it is the method of choice for the fatigue calculation of welded structures. In previous papers the frequency approach has been successful applied showing a good correlation with the life and damage estimated using a time based approach; in this paper the same comparative process has been applied but now extended specifically to welded structures. Both the frequency domain approach and time domain approach are used for numerically predicting the fatigue life of the seam welds of a thin sheet powertrain installation bracketry of a commercial truck submitted to variable amplitude loading. Predicted results are then compared with bench tests results, and their accuracy are rated.
Technical Paper

Effect of Engine Motion on the Fatigue Life of Cooling Components

2017-03-28
2017-01-0337
Ensuring durability is one of the key requirements while developing cooling modules for various powertrains. Typically, road surface induced loads are the main driving force behind mechanical failures. While developing the components, road load accelerations are utilized in CAE simulations to predict the high-stress regions and estimate the fatigue life of the components mounted on the body. In certain scenarios where components are mounted to the body and attached to the engine with hoses, the components can experience additional loads associated with engine vibration. This attachment scheme requires a different analysis methodology to determine fatigue life. In the proposed paper, we look at the effect of engine motion (EM) on the fatigue life of internal transmission oil cooler (ITOC) which is mounted on the body through radiator and is simultaneously connected to the engine using a steel pipe. We propose a new CAE methodology taking into account the engine motion displacements.
Technical Paper

A Method of Evaluating the Joint Effectiveness on Contribution to Global Stiffness and NVH Performance of Vehicles

2017-03-28
2017-01-0376
While Advanced High Strength Steels (AHSS) and the next generation AHSS grades offer improved crash safety and reduced weight for vehicles, the global stiffness and NVH performance are often compromised due to reduced material thickness. This paper discusses an advanced method of evaluating the joint effectiveness on contribution to global stiffness and NVH performance of vehicles. A stiffness contribution ratio is proposed initiatively in this research, which evaluates the current contribution of the joints to the global stiffness and NVH performance of vehicles. Another parameter, joint effectiveness factor, has been used to study the potential of each joint on enhancing the global stiffness. The critical joints to enhance the vehicle stiffness and NVH performance can be identified based on above two parameters, and design changes be made to those critical joints to improve the vehicle performance.
Technical Paper

Extensional Rheology: New Dimension of Characterizing Automotive Fluids

2017-03-28
2017-01-0364
This paper describes the basic principles of extensional rheometry, and the successful application to a variety of automotive fluids, including gear lubricants, paints, and forming lubricants. These fluids are used under very complex flow fields containing strong extensional (elongational) components. While exact derivation of extensional viscosities involves sophisticated theories, the measurement of liquid filament break-up time can provide fruitful information. Gear lubes showed different break-up time according to the kinematic viscosities. Addition of viscosity modifier (acrylic copolymer) significantly increased the breakup time, whereas surfactants had little effect. Clearcoat paint sample increased the breakup time, perhaps due to the deterioration. The waxy stamping lubricant showed remarkable change in the extensional properties as the temperature is raised.
Technical Paper

Weld Line Factors for Thermoplastics

2017-03-28
2017-01-0481
Weld lines occur when melt flow fronts meet during the injection molding of plastic parts. It is important to investigate the weld line because the weld line area can induce potential failure of structural application. In this paper, a weld line factor (W-L factor) was adopted to describe the strength reduction to the ultimate strength due to the appearance of weld line. There were two engineering thermoplastics involved in this study, including one neat PP and one of talc filled PP plastics. The experimental design was used to investigate four main injection molding parameters (melt temperature, mold temperature, injection speed and packing pressure). Both the tensile bar samples with/without weld lines were molded at each process settings. The sample strength was obtained by the tensile tests under two levels of testing speed (5mm/min and 200mm/min) and testing temperatures (room temperature and -30°C). The results showed that different materials had various values of W-L factor.
Technical Paper

Innovative Weld Design for a Plastic Pressure Vessel

2017-03-28
2017-01-0468
A new weld design to form plastic hollow articles is conceived. Its design is T-shaped such that the joint loading under pressure is no longer in peel but in tension, vertically to the weld surface. This weld design can be easily achieved, overcoming the limitation of die lock in injection molding and by the hot plate weld design adopted for this welding. Test samples were built to evaluate the new weld design concept and hot plates designed to help perform this weld joint. Pull test on the conventional L-shaped and the new T- shaped welded samples show an improvement of about 50% weld strength for the new T-shaped weld design. Hence a weld joint stronger than the parent material, in forming plastic hollow articles, is possible.
Technical Paper

Wear of D2 Tool Steel Dies during Trimming DP980-type Advanced High Strength Steel (AHSS) for Automotive Parts

2017-03-28
2017-01-1706
Automobile body panels made from advanced high strength steel (AHSS) provide high strength-to-mass ratio and thus AHSS are important for automotive light-weighting strategy. However, in order to increase their use, the significant wear damage that AHSS sheets cause to the trim dies should be reduced. The wear of dies has undesirable consequences including deterioration of trimmed parts' edges. In this research, die wear measurement techniques that consisted of white-light optical interferometry methods supported by large depth-of-field optical microscopy were developed. 1.4 mm-thick DP980-type AHSS sheets were trimmed using dies made from AISI D2 steel. A clearance of 10% of the thickness of the sheets was maintained between the upper and lower dies. The wear of the upper and lower dies was evaluated and material abrasion and chipping were identified as the main damage features at the trim edges.
X