Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Modelling and Analysis of a Cooperative Adaptive Cruise Control (CACC) Algorithm for Fuel Economy

2024-04-09
2024-01-2564
Connectivity in ground vehicles allows vehicles to share crucial vehicle data, such as vehicle acceleration and speed, with each other. Using sensors such as radars and lidars, on the other hand, the intravehicular distance between a leader vehicle and a host vehicle can be detected. Cooperative Adaptive Cruise Control (CACC) builds upon ground vehicle connectivity and sensor information to form convoys with automated car following. CACC can also be used to improve fuel economy and mobility performance of vehicles in the said convoy. In this paper, a CACC system is presented, where the acceleration of the lead vehicle is used in the calculation of desired vehicle speed. In addition to the smooth car following abilities, the proposed CACC also has the capability to calculate a speed profile for the ego vehicle that is fuel efficient, making it an Ecological CACC (Eco-CACC) model.
Technical Paper

Trends in Driver Response to Forward Collision Warning and the Making of an Effective Alerting Strategy

2024-04-09
2024-01-2506
This paper compares the results from three human factors studies conducted in a motion-based simulator in 2008, 2014 and 2023, to highlight the trends in driver's response to Forward Collision Warning (FCW). The studies were motivated by the goal to develop an effective HMI (Human-Machine Interface) strategy that enables the required driver's response to FCW while minimizing the level of annoyance of the feature. All three studies evaluated driver response to a baseline-FCW and no-FCW conditions. Additionally, the 2023 study included two modified FCW chime variants: a softer FCW chime and a fading FCW chime. Sixteen (16) participants, balanced for gender and age, were tested for each group in all iterations of the studies. The participants drove in a high-fidelity simulator with a visual distraction task (number reading). After driving 15 minutes in a nighttime rural highway environment, a surprise forward collision threat arose during the distraction task.
Technical Paper

INCORPORATING METHODS OF GRAPHENE IN POLYMERIC NANOCOMPOSITES TOWARDS AUTOMOTIVE APPLICATIONS -A BRIEF REVIEW

2024-01-08
2023-36-0015
This work aims to develop a PA6 nanocomposite with glass fiber (GF) and graphene nanoplatelets (GNPs) focusing on automotive parts application. Polyamide 6 is a semi-crystalline polymer that exhibits high fatigue and flexural strength, making it viable for rigorous applications. Along with the improved electrical, mechanical, thermal, and optical performance achieved in PA6 and GF-based nanocomposites, they can fill complex geometries, have great durability, and are widely utilized due to their capacity of reducing the weight of the vehicle besides a cost reduction potential. The glass fiber is a filamentary composite, usually aggregated in polymeric matrices, which aims to amplify the mechanical properties of polymers, mainly the tensile strength in the case of PA6.
Technical Paper

Investigation of the Impact of Fiberglass on the Performance of Injected Thermoplastic Automotive Parts

2024-01-08
2023-36-0046
Manufacturing processes impact many factors on a product. Depending on the selected method, development time, part performance and cost are affected. In the automotive sector, there is a growing demand for weight reduction due to the advent of electrification and the greenhouse gas emission regulations. In addition, geometric complexity is a challenging factor for the feasibility of mass production of parts. In this scenario, plastic materials are a very interesting option for application in various vehicle parts, since these materials can be molded by injection, vacuum forming, among others, while maintaining good mechanical properties. Almost a third of a vehicle’s parts are polymeric, making the development of these materials strategic for car manufacturers. This article investigates the impact of the presence of fiberglass in a thermoplastic automotive body part.
Technical Paper

Connected Vehicle Data – Prognostics and Monetization Opportunity

2023-10-31
2023-01-1685
In recent years, the automotive industry has seen an exponential increase in the replacement of mechanical components with electronic-controlled components or systems. engine, transmission, brake, exhaust gas recirculation (EGR), lighting, driver-assist technologies, etc. are all monitored and/or controlled electronically. Connected vehicles are increasingly being used by Original Equipment Manufacturers (OEMs) to collect and transmit vehicle data in real-time via the use of various sensors, actuators, and communication technologies. Vehicle telematics devices can collect and transmit data about the vehicle location, speed, fuel efficiency, State Of Charge (SOC), auxiliary battery voltage, emissions, performance, and more. This data is sent over to the cloud via cellular networks, where it can be processed and analyzed to improve their products and services by automotive companies and/or fleet management.
Technical Paper

Verification of Driver Status Monitoring Camera Position Using Virtual Knowledge-Based Engineering

2023-04-11
2023-01-0090
A DMS (Driver Monitoring System) is one of the most important safety features that assist in the monitoring functions and alert drivers when distraction or drowsiness is detected. The system is based in a DSMC (Driver Status Monitoring Camera) mounted in the vehicle's dash, which has a predefined set of operational requirements that must be fulfilled to guarantee the correct operation of the system. These conditions represent a trade space analysis challenge for each vehicle since both the DSMC and the underlying vehicle’s requirements must be satisfied. Relying upon the camera’s manufacturer evaluation for every iteration of the vehicle’s design has proven to be time-consuming, resources-intensive, and ineffective from the decision-making standpoint.
Technical Paper

Synergizing Artificial Intelligence with Product Recall Management Process

2023-04-11
2023-01-0867
There are a multitude of dynamics faced by any industry. There is also a consistent search and development of technological platforms and services to address these changes. This necessitates a shared work philosophy which involves multiple stakeholders. Verification and validation are integral part of any development irrespective of product, process, or services. Also, every industry has a regulatory compliance to adhere too. But the extent of complexity and the level of dependencies or interactions between modules as well as stakeholders involved, creates slippage at some or other level. Nowadays the industries are also driven by reuse for cost effectiveness. Though it marks the significant improvement in the capability to compete, compatibility is a key measure to a successful product or service launch and sustainability.
Technical Paper

Evaluation of Drivers of Very Large Pickup Trucks: Size, Seated Height and Biomechanical Responses in Drop Tests

2023-04-11
2023-01-0649
This study focused on occupant responses in very large pickup trucks in rollovers and was conducted in three phases. Phase 1 - Field data analysis: In a prior study [9], 1998 to 2020 FARS data were analyzed; Pickup truck drivers with fatality were 7.4 kg heavier and 4.6 cm taller than passenger car drivers. Most pickup truck drivers were males. Phase 1 extended the study by focusing on the drivers of very large pickup trucks. The size of 1999-2016 Ford F-250 and F-350 drivers involved in fatal crashes was analyzed by age and sex. More than 90% of drivers were males. The average male driver was 179.5 ± 7.5 cm tall and weighed 89.6 ± 18.4 kg. Phase 2 – Surrogate study: Twenty-nine male surrogates were selected to represent the average size of male drivers of F-250 and F-350s involved in fatal crashes. On average, the volunteers weighed 88.6 ± 5.2 kg and were 180.0 ± 3.2 cm tall with a 95.2 ± 2.2 cm seated height.
Technical Paper

Evolution of India EV Ecosystem

2022-10-05
2022-28-0035
Electric vehicles (EVs) are a promising and proven technology for achieving sustainable mobility with zero carbon emissions, very low noise pollution, and reducing the dependency on fossil fuels. Global EV sales have been increasing by ~110 % since 2015, with a significant rise in 2021 (~6.75 mils EV registered) mainly led by China, the US, and Europe, amplifying the EV market share to 8.3% compared to 4.2% in 2020. Future developments aimed at designing better batteries and charging technologies that reduce charging time, reduce initial battery cost, and increased flexibility. In India, EVs are emerging significantly due to stringent Carbon di Oxide (CO2) reduction drives, increasing crude oil prices, and the availability of cheaper renewable energy. Leveraging government promotional policies, evolving the entire ecosystem, globally advantageous manufacturing costs, and competitive engineering skills form the perfect blend for India.
Technical Paper

An Optimization Model for Die Sets Allocation to Minimize Supply Chain Cost

2022-07-08
2022-01-5057
In this paper, a novel mixed-integer programming model is developed to optimally assign the die sets to candidate plants to minimize the total costs. The total costs include freight shipping stamped parts to assembly plants, die set movement, outsourcing, and utilization. Therefore, the objective function is weighted multi-criteria and it takes into consideration some of the key constraints in the real-world condition including “must-move die sets”. An optimization tool has been developed that takes several inputs and feeds them as the input to the mathematical model and generates the optimal assignments with the directional costs as the output. The tool has been tested for several plants at Ford and has proved its robustness by saving millions of dollars. The developed tool can easily be applied to other manufacturing systems and original equipment manufacturers (OEMs).
Technical Paper

Test-in-Production Framework on a Microcontroller Environment

2022-03-29
2022-01-0112
In modern automobiles, many new complex features are enabled by software and sensors. When combined with the variability of real-world environments and scenarios, validation of this ever-increasing amount of software becomes complex, costly, and takes a lot of time. This challenges automakers ability to quickly and reliably develop and deploy new features and experiences that their customers want in the marketplace. While traditional validation methods and modern virtual validation environments can cover most new feature testing, it is challenging to cover certain real-world scenarios. These scenarios include variation in weather conditions, roadway environments, driver usage, and complex vehicle interactions. The current approach to covering these scenarios often relies on data collected from long vehicle test trips that try to capture as many of these unique situations as possible. These test trips contribute significantly to the validation cost and time of new features.
Technical Paper

Green Light Optimized Speed Advisory (GLOSA) with Traffic Preview

2022-03-29
2022-01-0152
By utilizing the vehicle to infrastructure communication, the conventional Green Light Optimized Speed Advisory (GLOSA) applications give speed advisory range for drivers to travel to pass at the green light. However, these systems do not consider the traffic between the ego vehicle and the traffic light location, resulting in inaccurate speed advisories. Therefore, the driver needs to intuitively adjust the vehicle's speed to pass at the green light and avoid traffic in these scenarios. Furthermore, inaccurate speed advisories may result in unnecessary acceleration and deceleration, resulting in poor fuel efficiency and comfort. To address these shortcomings of conventional GLOSA, in this study, we proposed the utilization of collaborative perception messages shared by smart infrastructures to create an enhanced speed advisory for the connected vehicle drivers and automated vehicles.
Technical Paper

U-Bolt Pre-Load and Torque Capacity Determination Using Non-Linear CAE

2022-03-29
2022-01-0773
This paper presents a method of using CAE to determine the pre-load and torque applied to a U-Bolt rear Spring Seat. In this paper it is review two U-bolt design and the stresses generated by the pre-load torque applied, based in this study a process to determine the minimal preload and the torque is discussed. By this process it is possible to determine the minimum Torque and the correct pre-load in the U-Bolt element and assuring the correct fastening of the components avoiding over stress in the Bar elements.
Journal Article

Latching Effort Predictions and its Design Characteristics Studies on Automotive Rear Seat

2022-03-29
2022-01-0339
Automotive Rear Seats are designed as foldable seats to provide more luggage space to customers when the seat is unoccupied. Foldable seats are of two types, Free Standing Seats and High Latch Seats. Free standing seats are designed with recliner mechanism which allows the seat back to rotate and lock at any given position. High Latch Seats are designed with latches operated by CAMs & Springs which locks with striker wire mounted on the body or side pillars. Recliner Mechanism on free standing seat helps to rotate and lock the seat back at any position with ease. But high latch seats require higher efforts to push the seats towards the striker wire to lock. Efforts (Force in N) required to latch the seats with striker wire need to be in the operating range of customers to latch it easily. Hence latching effort calculations and study of design factors which influence the latching efforts get more importance to avoid any customer complaints at later stage.
Journal Article

Low-Cost Magnesium Alloy Sheet Component Development and Demonstration Project

2022-03-29
2022-01-0248
Most of the applications of magnesium in lightweighting commercial cars and trucks are die castings rather than sheet metal, and automotive applications of magnesium sheet have typically been experimental or low-volume serial production. The overarching objective of this collaborative research project organized by the United States Automotive Materials Partnership (USAMP) was to develop new low-cost magnesium alloys, and demonstrate warm-stamping of magnesium sheet inner and outer door panels for a 2013 MY Ford Fusion at a fully accounted integrated component cost increase over conventional steel stamped components of no more than $2.50/lb. saved ($5.50/kg saved). The project demonstrated the computational design of new magnesium (Mg) alloys from atomistic levels, cast new experimental alloy ingots and explored thermomechanical rolling processes to produce thin Mg sheet of desired textures.
Technical Paper

A Systematic Approach to Develop Metaheuristic Traffic Simulation Models from Big Data Analytics on Real-World Data

2021-04-06
2021-01-0166
Researchers and engineers are utilizing big data analytics to draw further insights into transportation systems. Large amounts of data at the individual vehicle trip level are being collected and stored. The true potential of such data is still to be determined. In this paper, we are presenting a data-driven, novel, and intuitive approach to model driver behaviors using microscopic traffic simulation. Our approach utilizes metaheuristic methods to create an analytical tool to assess vehicle performance. Secondly, we show how microscopic simulation run outputs can be post-processed to obtain vehicle and trip level performance metrics. The methodology will form the basis for a data-driven approach to unearthing trip experiences as realized by drivers in the real world. The methodology will contribute to, A.) Using vehicle trajectory traces to identify underlying vehicle maneuver distributions as obtained from real-world driver data, B.)
Technical Paper

Application of Data Analytics to Decouple Historical Real-World Trip Trajectories into Representative Maneuvers for Driving Characterization

2021-04-06
2021-01-0169
Historical driver behavior and drive style are crucial inputs in addition to V2X connectivity data to predict future events as well as fuel consumption of the vehicle on a trip. A trip is a combination of different maneuvers a driver executes to navigate a route and interact with his/her environment including traffic, geography, topography, and weather. This study leverages big data analytics on real-world customer driving data to develop analytical modeling methodologies and algorithms to extract maneuver-based driving characteristics and generate a corresponding maneuver distribution. The distributions are further segmented by additional categories such as customer group and type of vehicle. These maneuver distributions are used to build an aggressivity distribution database which will serve as the parameter basis for further analysis with traffic simulation models.
Technical Paper

Assessing the Impacts of Dedicated CAV Lanes in a Connected Environment: An Application of Intelligent Transport Systems in Corktown, Michigan

2021-04-06
2021-01-0177
The interaction of Connect and Automated vehicles (CAV) with regular vehicles in the traffic stream has been extensively researched. Most studies, however, focus on calibrating driver behavior models for CAVs based on various levels of automation and driver aggressiveness. Other related studies largely focus on the coordination of CAVs and infrastructure like traffic signals to optimize traffic. However, the effects of different strategic flow management of CAVs in the traffic stream in the comparative scenario-based analysis is understudied. Thus, this study develops a framework and simulations for integrating CAVs in a corridor section. We developed a calibrated model with CAVs for a corridor section in Corktown, Michigan, and simulate how dedicated CAV lane operations can be implemented without significant change in existing infrastructure.
Technical Paper

Dual-Recliner ABTS Seats in Severe Rear Sled Testswith the 5th, 50th and 95th Hybrid III

2021-04-06
2021-01-0917
Seat strength has increased over the past four decades which includes a transition to dual recliners. There are seat collision performance issues with stiff ABTS and very strong seats in rear impacts with different occupant sizes, seating positions and physical conditions. In this study, eight rear sled tests were conducted in four series: 1) ABTS in a 56 km/h (35 mph) test with a 50th Hybrid III ATD at MGA, 2) dual-recliner ABTS and F-150 in a 56 km/h (35 mph) test with a 5th female Hybrid III ATD at Ford, 3) dual-recliner ABTS in a 48 km/h (30 mph) test with a 95th Hybrid III ATD leaning inboard at CAPE and 4) dual-recliner ABTS and Escape in 40 km/h (25 mph) in-position and out-of-position tests with a 50th Hybrid III ATD at Ford. The sled tests showed that single-recliner ABTS seats twist in severe rear impacts with the pivot side deformed more rearward than the stanchion side.
Technical Paper

An Analysis of the Effects of Ventilation on Burn Patterns Resulting from Passenger Compartment Interior Fires

2020-04-14
2020-01-0923
Vehicle fire investigators often use the existence of burn patterns, along with the amount and location of fire damage, to determine the fire origin and its cause. The purpose of this paper is to study the effects of ventilation location on the interior burn patterns and burn damage of passenger compartment fires. Four similar Ford Fusion vehicles were burned. The fire origin and first material ignited were the same for all four vehicles. In each test, a different door window was down for the duration of the burn test. Each vehicle was allowed to burn until the windshield, back glass, or another window, other than the window used for ventilation, failed, thus changing the ventilation pattern. At that point, the fire was extinguished. Temperatures were measured at various locations in the passenger compartment. Video recordings and still photography were collected at all phases of the study.
X