Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Compact Normalized Description of Vehicle Traction Power for Simple Fuel Consumption Modeling

2023-04-11
2023-01-0350
This is an extension of simple fuel consumption modeling toward HEV. Previous work showed that in urban driving the overhead of running an ICEV engine can use as much fuel as the traction work. The bidirectional character and high efficiency of electric motors enables HEVs to run as a BEV at negative and low traction powers, with no net input from the small battery. The ICE provides the net work at higher traction powers where it is most efficient. Whereas the network reduction is the total negative work times the system round-trip efficiency, the reduction in engine running time requires knowledge of the distribution of traction power levels. The traction power histogram, and the work histogram derived from it, provide the required drive cycle description. The traction power is normalized by vehicle mass, so that the drive trace component becomes invariant, and the road load component nearly invariant to vehicle mass.
Journal Article

Development of a Detailed 3D Finite Element Model for a Lithium-Ion Battery Subject to Abuse Loading

2023-04-11
2023-01-0007
Lithium-ion batteries (LIBs) have been used as the main power source for Electric vehicles (EVs) in recent years. The mechanical behavior of LIBs subject to crush loading is crucial in assessing and improving the impact safety of battery systems and EVs. In this work, a detailed 3D finite element model for a commercial vehicle battery was built, in order to better understand battery failure behavior under various loading conditions. The model included the major components of a prismatic battery jellyroll, i.e., cathodes, anodes, and separators. The models for these components were validated against the corresponding material coupon tests (e.g., tension and compression). Then the components were integrated into the cell level model for simulation of jellyroll loading and damage behavior under three types of compressive indenter loading: (1) Flat-end punch, (2) Hemispherical punch and (3) Round-edge wedge. The comparisons showed reasonable agreement between modeling and experiments.
Technical Paper

High Cell Density Flow Through Substrate for New Regulations

2023-04-11
2023-01-0359
This paper, written in collaboration with Ford, evaluates the effectiveness of higher cell density combined with higher porosity, lower thermal mass substrates for emission control capability on a customized, RDE (Real Driving Emissions)-type of test cycle run on a chassis dynamometer using a gasoline passenger car fitted with a three-way catalyst (TWC) system. Cold-start emissions contribute most of the emissions control challenge, especially in the case of a very rigorous cold-start. The majority of tailpipe emissions occur during the first 30 seconds of the drive cycle. For the early engine startup phase, higher porosity substrates are developed as one part of the solution. In addition, further emission improvement is expected by increasing the specific surface area (GSA) of the substrate. This test was designed specifically to stress the cold start performance of the catalyst by using a short, 5 second idle time preceding an aggressive, high exhaust mass flowrate drive cycle.
Technical Paper

Evolution of India EV Ecosystem

2022-10-05
2022-28-0035
Electric vehicles (EVs) are a promising and proven technology for achieving sustainable mobility with zero carbon emissions, very low noise pollution, and reducing the dependency on fossil fuels. Global EV sales have been increasing by ~110 % since 2015, with a significant rise in 2021 (~6.75 mils EV registered) mainly led by China, the US, and Europe, amplifying the EV market share to 8.3% compared to 4.2% in 2020. Future developments aimed at designing better batteries and charging technologies that reduce charging time, reduce initial battery cost, and increased flexibility. In India, EVs are emerging significantly due to stringent Carbon di Oxide (CO2) reduction drives, increasing crude oil prices, and the availability of cheaper renewable energy. Leveraging government promotional policies, evolving the entire ecosystem, globally advantageous manufacturing costs, and competitive engineering skills form the perfect blend for India.
Technical Paper

Design of an Additive Manufactured Natural Gas Engine with Thermally Conditioned Active Prechamber

2022-06-14
2022-37-0001
In order to decarbonize and lower the overall emissions of the transport sector, immediate and cost-effective powertrain solutions are needed. Natural gas offers the advantage of a direct reduction of carbon dioxide (CO2) emissions due to its better Carbon to Hydrogen ratio (C/H) compared to common fossil fuels, e.g. gasoline or diesel. Moreover, an optimized engine design suiting the advantages of natural gas in knock resistance and lean mixtures keeping in mind the challenges of power density, efficiency and cold start manoeuvres. In the public funded project MethMag (Methane lean combustion engine) a gasoline fired three-cylinder-engine is redesigned based on this change of requirements and benchmarked against the previous gasoline engine.
Technical Paper

Test-in-Production Framework on a Microcontroller Environment

2022-03-29
2022-01-0112
In modern automobiles, many new complex features are enabled by software and sensors. When combined with the variability of real-world environments and scenarios, validation of this ever-increasing amount of software becomes complex, costly, and takes a lot of time. This challenges automakers ability to quickly and reliably develop and deploy new features and experiences that their customers want in the marketplace. While traditional validation methods and modern virtual validation environments can cover most new feature testing, it is challenging to cover certain real-world scenarios. These scenarios include variation in weather conditions, roadway environments, driver usage, and complex vehicle interactions. The current approach to covering these scenarios often relies on data collected from long vehicle test trips that try to capture as many of these unique situations as possible. These test trips contribute significantly to the validation cost and time of new features.
Technical Paper

Uncertainty Quantification of Wet Clutch Actuator Behaviors in P2 Hybrid Engine Start Process

2022-03-29
2022-01-0652
Advanced features in automotive systems often necessitate the management of complex interactions between subsystems. Existing control strategies are designed for certain levels of robustness, however their performance can unexpectedly deteriorate in the presence of significant uncertainties, resulting in undesirable system behaviors. This limitation is further amplified in systems with complex nonlinear dynamics. Hydro-mechanical clutch actuators are among those systems whose behaviors are highly sensitive to variations in subsystem characteristics and operating environments. In a P2 hybrid propulsion system, a wet clutch is utilized for cranking the engine during an EV-HEV mode switching event. It is critical that the hydro-mechanical clutch actuator is stroked as quickly and as consistently as possible despite the existence of uncertainties. Thus, the quantification of uncertainties on clutch actuator behaviors is important for enabling smooth EV-HEV transitions.
Technical Paper

Wheel Torque-Based Control: Transmission Input Torque Determination and Inertia Compensation

2022-03-29
2022-01-0733
Traditionally, the controls system in production vehicles with automatic transmission interprets the driver’s accelerator pedal position as a demand for transmission input torque. However, with the advent of electrified vehicles, where actuators are located at different positions in the drivetrain, and of autonomous vehicles, which are self-driving, it is more convenient to interpret the demand (either human or virtual) in vehicle acceleration or wheel torque domain. To this end, a Wheel Torque-based longitudinal Control (WTC) framework was developed, wherein demands can be converted accurately between the vehicle acceleration or wheel torque domain and the transmission assembly input torque domain.
Journal Article

Fast Air-Path Modeling for Stiff Components

2022-03-29
2022-01-0410
Development of propulsion control systems frequently involves large-scale transient simulations, e.g. Monte Carlo simulations or drive-cycle optimizations, which require fast dynamic plant models. Models of the air-path—for internal combustion engines or fuel cells—can exhibit stiff behavior, though, causing slow numerical simulations due to either using an implicit solver or sampling much faster than the bandwidth of interest to maintain stability. This paper proposes a method to reduce air-path model stiffness by adding an impedance in series with potentially stiff components, e.g. throttles, valves, compressors, and turbines, thereby allowing the use of a fast-explicit solver. An impedance, by electrical analogy, is a frequency-dependent resistance to flow, which is shaped to suppress the high-frequency dynamics causing air-path stiffness, while maintaining model accuracy in the bandwidth of interest.
Journal Article

Unified Power-Based Analysis of Combustion Engine and Battery Electric Vehicle Energy Consumption

2022-03-29
2022-01-0532
The previously developed power-based fuel consumption theory for Internal Combustion Engine Vehicles (ICEV) is extended to Battery Electric Vehicles (BEV). The main difference between the BEV model structure and the ICEV is the bi-directional character of traction motors and batteries. A traction motor model was developed as a bi-linear function of positive and negative traction power. Another difference is that the accessories and cabin heating are powered directly from the battery, and not from the powertrain. The resulting unified model for ICEV and BEV energy consumption has linear terms proportional to positive and negative traction power, accessory power, and overhead, in varying proportions. Compared to the ICEV, the BEV powertrain has a high marginal efficiency and low overhead. As a result, BEV energy consumption data under a wide range of driving conditions are mainly proportional to net traction power, with only a small offset.
Journal Article

Improving Keyhole Stability during Laser Welding of AA5xxx Alloys

2022-03-29
2022-01-0247
Laser welding of the magnesium-bearing AA5xxx aluminum alloys is often beset by keyhole instability, especially in the lap through joint configuration. This phenomenon is characterized by periodic collapse of the keyhole leaving large voids in the weld zone. In addition, the top surface can exhibit undercut and roughness. In full penetration welds, keyhole instability can also produce a spikey root and severe top surface concavity. These discontinuities could prevent a weld from achieving engineering specification compliance, pose a craftsmanship concern, or reduce the strength and fatigue performance of the weld. In the case of a full penetration weld, a spikey root could compromise part fit-up and corrosion protection, or damage adjacent sheet metal, wiring, interior components, or trim.
Journal Article

Estimation of Surface Temperature Distributions Across an Array of Lithium-Ion Battery Cells Using a Long Short-Term Memory Neural Network

2022-03-29
2022-01-0713
As electric vehicles are becoming increasingly popular and necessary for the future mobility needs of civilization, further effort is continually made to improve the efficiency, cost, and safety of the lithium-ion battery packs that power these vehicles. To facilitate these goals, this paper introduces a data driven model to predict a distribution of surface temperatures for a lithium-ion battery pack: a long short-term memory (LSTM) neural network. The LSTM model is trained and validated with lithium-ion cells electrically connected to form a battery pack. Voltage, current, state of charge (SOC), and cell surface temperature from two arrays are used as inputs from a wide range of high and low temperature drive cycles. Additionally, ambient temperature is added as an input to the LSTM model.
Journal Article

Real-time Detection and Avoidance of Obstacles in the Path of Autonomous Vehicles Using Monocular RGB Camera

2022-03-29
2022-01-0074
In this paper, we present an end-to-end real-time detection and collision avoidance framework in an autonomous vehicle using a monocular RGB camera. The proposed system is able to run on embedded hardware in the vehicle to perform real-time detection of small objects. RetinaNet architecture with ResNet50 backbone is used to develop the object detection model using RGB images. A quantized version of the object detection inference model is implemented in the vehicle using NVIDIA Jetson AGX Xavier. A geometric method is used to estimate the distance to the detected object which is forwarded to a MicroAutoBox device that implements the control system of the vehicle and is responsible for maneuvering around the detected objects. The pipeline is implemented on a passenger vehicle and demonstrated in challenging conditions using different obstacles on a predefined set of waypoints.
Technical Paper

Economic Impacts of Vehicle-to-Grid Technology implementation for the Consumers in Brazil

2022-02-04
2021-36-0068
This article aims to analyze the potential economic effects for consumers with the implementation of the Vehicle-to-Grid (V2G) and the Vehicle-to-Home (V2H) networks in Brazil. Nowdays, the usage of both technologies in Brazil are at a regulatory vacuum for both Battery Electric Vehicles (BEVs), Plug-in Hybrid Electric Vehicles (PHEVs) and Hybrid Electric Vehicles (HEVs). Usually, when a legislation lack occurs, the local OEMs adopt IECs (International Electrotechnical Commissions) and/or SAEs (Society of Automotive Engineers) reference international standards, such as SAE J1634 for range test.
Technical Paper

Exponential Trajectory Tracking Passivity-Based Control for Permanent-Magnet Synchronous Motors

2021-04-09
2021-01-5047
In this paper, a novel methodology of nonlinear control is used, and a passivity-based control of contractive port-controlled Hamiltonian (PCH) systems is applied to a permanent magnet synchronous motor (PMSM). This methodology, also called “tIDA-PBC” (Trajectory Injection and Damping Assignment—Passivity-Based Control), uses passivity-based control of PCH systems “IDA-PBC” and exploits the properties of contractive Hamiltonian systems, resulting in a closed loop with its contractive system desired dynamics, thus obtaining an exponential trajectory tracking without relying on the error coordinates. In this system, a few steps are proposed in order to divide and modularize the methodology so it can be redesigned or reapplied in other systems by the reader. First, we define the model and set the way to solve the “matching equation.” Then the feasible and reference trajectories are obtained.
Technical Paper

Experimental Validation of Eco-Driving and Eco-Heating Strategies for Connected and Automated HEVs

2021-04-06
2021-01-0435
This paper presents experimental results that validate eco-driving and eco-heating strategies developed for connected and automated vehicles (CAVs). By exploiting vehicle-to-infrastructure (V2I) communications, traffic signal timing, and queue length estimations, optimized and smoothed speed profiles for the ego-vehicle are generated to reduce energy consumption. Next, the planned eco-trajectories are incorporated into a real-time predictive optimization framework that coordinates the cabin thermal load (in cold weather) with the speed preview, i.e., eco-heating. To enable eco-heating, the engine coolant (as the only heat source for cabin heating) and the cabin air are leveraged as two thermal energy storages. Our eco-heating strategy stores thermal energy in the engine coolant and cabin air while the vehicle is driving at high speeds, and releases the stored energy slowly during the vehicle stops for cabin heating without forcing the engine to idle to provide the heating source.
Technical Paper

Automated Hardware-in-the-Loop Testing Using a Cloud-Based Architecture

2021-04-06
2021-01-0133
The software gradually takes over more and more tasks of the driver and paves the way to autonomous driving. Software development and software verification is therefore crucial for manufacturer's success. Standards such as ISO 26262 highly recommend requirements-based verification. Agile development uses continuous integration testing based on test automation and evaluation. All this pushed the creation of a model-based software verification environment that provides test generation and test automatization for all kinds of signal-based tests along the V-model. This paper presents a novel core component of this environment, which is as far as to the extent possible a standard-compliant cloud-based solution to test automation at the hardware level. Based on characteristic properties of testbenches, such as the wiring or the connected ECUs, hardware resources available at remote locations can be fully automated.
Technical Paper

Coalesce of Artificial Intelligence into ADAS Hardware-In-the-Loop Testing

2021-04-06
2021-01-0193
Automotive industry is inclined towards connected, comfortable, environment friendly, efficient and smarter systems. Advanced Driver Assist System (ADAS) technology assist drivers to achieve a safer as well as better ride by automation and improvisation of the vehicular systems. With the advent of ADAS system, there is a significant focus not only in the development of Electronic Control Units (ECUs) and its features to cater to the emerging market but also on the information that could be displayed to meet the functional as well as safety requirements. This ADAS information display ensures timely notification to the driver with unique alerts that can be acoustic or visual. These systems should be tested thoroughly to ensure reliability as failures may impose severe risk on the OEM. Hardware in the loop testing has been largely adopted by industry against manual testing in lieu of the testing constraints imposed by the latter.
Technical Paper

Real-Time Hydro-Mechanical Transmission System Simulations for Model-Guided Assessment of Complex Shift Sequence

2021-04-06
2021-01-0715
Model-guided development of drivetrain control and calibration is a key enabler of robust and efficient vehicle design process. A number of CAE tools are available today for modeling hydro-mechanical systems. Automatic transmission behaviors are well understood to effectively tune the model parameters for targeted applications. Drivetrain models provide physical insight for understanding the effects of component interactions on system behaviors. They are also widely used in HIL/SIL environments to debug control strategies. Nonetheless, it is still a challenge to predict shift quality, especially during a sequence of multiple events, with enough accuracy to support model-guided control design and calibration. The inclusion of hydraulic circuits in simulation models often results in challenges for numerical simulation.
Technical Paper

Friction Force Reduction for Electrical Terminals using Solution-Processed Reduced Graphene Oxide Coating

2021-04-06
2021-01-0348
Electrical connectors and terminals are widely used in the automotive industry. It is desirable to mate the electrical connections using materials or coatings with low friction force to improve the ergonomics of the assembly process while maintaining good electrical conduction over the lifetime of the vehicle. We have previously shown that plasma-enhanced chemical vapor deposition (PECVD) of graphene on gold (Au) and silver (Ag) terminals can significantly reduce the insertion force (friction force during the terminal insertion process). However, the cost of this deposition method is rather high, and its high temperature process (> 400 oC) makes it impractical for materials with low melting temperatures. For example, tin (Sn) coating with a melting temperature of 232 oC is commonly used in electrical connectors, which cannot sustain the high temperature process. In this study, reduced graphene oxide was prepared using a low-cost solution process and applied onto metallic terminals.
X