Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

An Assessment of the Impact of Exhaust Turbine Redesign, for Narrow VGT Operating Range, on the Performance of Diesel Engines with Assisted Turbocharger

2019-04-02
2019-01-0326
Electrically assisted turbochargers are a promising technology for improving boost response of turbocharged engines. These systems include a turbocharger shaft mounted electric motor/generator. In the assist mode, electrical energy is applied to the turbocharger shaft via the motor function, while in the regenerative mode energy can be extracted from the shaft via the generator function, hence these systems are also referred to as regenerative electrically assisted turbochargers (REAT). REAT allows simultaneous improvement of boost response and fuel economy of boosted engines. This is achieved by optimally scheduling the electrical assist and regeneration actions. REAT also allows the exhaust turbine to operate within a narrow range of optimal vane positions relative to the unassisted variable geometry turbocharger (VGT). The ability to operate within a narrow range of VGT vane positions allows an opportunity for a more optimal turbine design for a REAT system.
Technical Paper

Duct Shape Optimization Using Multi-Objective and Geometrically Constrained Adjoint Solver

2019-04-02
2019-01-0823
In the recent years, adjoint optimization has gained popularity in the automotive industry with its growing applications. Since its inclusion in the mainstream commercial CFD solvers and its continuously added capabilities over the years, its productive usage became readily available to many engineers who were previously limited to interfacing the customized adjoint source code with CFD solvers. The purpose of this work is to demonstrate using an adjoint solver a method to optimize duct shape that meets multiple design objectives simultaneously. To overcome one of the biggest challenges in the duct design, i.e. the severe packaging constraints, the method here uses geometrically constrained adjoint to ensure that the optimum shape always fits into the user-defined packaging space. In this work, adjoint solver and surface sensitivity calculations are used to develop the optimization method.
Technical Paper

Using Artificial Ash to Improve GPF Performance at Zero Mileage

2019-04-02
2019-01-0974
Gasoline particulate filters (GPF) with high filtration efficiency (>80%) at zero mileage are in growing demand to meet increasingly tight vehicle emission standards for particulate matter being implemented in US, EU, China and elsewhere. Current efforts to achieve high filter performance mainly focus on fine-tuning the filter structure, such as the pore size distribution and porosity of the bare substrate, or the washcoat loading and location of catalyzed substrates. However, high filtration efficiency may have a cost in high backpressure that negatively affects engine power. On the other hand, it has been recognized in a few reports that very low amounts of ash deposits (from non-combustible residue in the exhaust) can significantly increase filtration efficiency with only a mild backpressure increase.
Technical Paper

One piece hot formed AB ring reinforcement

2018-09-03
2018-36-0022
The usage of Boron steel in the South American automotive industry has been increasing in recent years. Considering its high hardening properties, sheet metal parts can only be manufactured using a hot forming process, as compared to a conventional cold forming process; however, the hot stamping process offers the advantage to stamp a part in a single die vs. multiple dies using a regular cold stamping process. The main objective is to present the advantages of constructing the whole AB ring reinforcement out of Boron steel and made out of a single die, and no welding among the A pillar reinforcement, B Pillar reinforcement and rocker panel. This type of design has helped to achieve crash safety performance goals, enhance the structural characteristics of joints, improve dimensional control, reduce the number of welds, manage BIW overall weight and improve torsion rigidity.
Technical Paper

Closures weatherstrips with variable cross sections

2018-09-03
2018-36-0152
Closures systems performance is a trade-off between NVH (Noise, Vibration and Harshness) and DCE (Door Closing Efforts) requirements. Dynamic sealing performance and sheet metal rigidity are the key contributors for a stable system. The seals actuate like a spring on the system. Higher seal load is good for NVH performance, adding more dumping to the system, but it will negatively affect DCE, as it will demand additional energy to close the system. Nominal seal load must be defined to achieve a balance between these attributes. This study is about dynamic sealing profiles with variable seal load, which provides tunable solutions to address the trade-off between NVH and DCE on the side doors or rear closures. Dynamic sealing weatherstrips are made of sponge EPDM extruded profiles with a specified load, defined by its CLD (Compression Load Deflection), which is given by the cross section design.
Technical Paper

The Development of Low Temperature Three-Way Catalysts for High Efficiency Gasoline Engines of the Future: Part II

2018-04-03
2018-01-0939
It is anticipated that future gasoline engines will have improved mechanical efficiency and consequently lower exhaust temperatures at low load conditions, although the exhaust temperatures at high load conditions are expected to remain the same or even increase due to the increasing use of downsized turbocharged engines. In 2014, a collaborative project was initiated at Ford Motor Company, Oak Ridge National Lab, and the University of Michigan to develop three-way catalysts with improved performance at low temperatures while maintaining the durability of current TWCs. This project is funded by the U.S. Department of Energy and is intended to show progress toward the USDRIVE target of 90% conversion of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) at 150 °C after high mileage aging. The testing protocols specified by the USDRIVE ACEC team for stoichiometric S-GDI engines were utilized during the evaluation of experimental catalysts at all three facilities.
Technical Paper

The Effect of Friction Modifiers and DI Package on Friction Reduction Potential of Next Generation Engine Oils: Part I Fresh Oils

2018-04-03
2018-01-0933
Friction reduction in lubricated components through engine oil formulations has been investigated in the present work. Three different DI packages in combination with one friction modifier were blended in SAE 5 W-20 and SAE 0 W-16 viscosity grades. The friction performance of these oils was compared with GF-5 SAE 5 W-20 oil. A motored cranktrain assembly has been used to evaluate these, in which friction mean effective pressure (FMEP) as a function of engine speeds at different lubricant temperatures is measured. Results show that the choice of DI package plays a significant role in friction reduction. Results obtained from the mini-traction machine (MTM2) provide detailed information on traction coefficient in boundary, mixed and elastohydrodynamic (EHD) lubrication regimes. It has been shown that the results from the cranktrain rig are fairly consistent with those found in MTM2 tests for all the lubricants tested.
Technical Paper

Impacts of Drive Cycle and Ambient Temperature on Modelled Gasoline Particulate Filter Soot Accumulation and Regeneration

2018-04-03
2018-01-0949
Gasoline particulate filters (GPF) are used as an efficient solution to reduce particulate matter (PM) emissions on gasoline vehicles. GPFs are ceramic wall-flow filters and are normally located downstream of conventional three-way catalysts (TWC) [1]. The study in this paper is intended to evaluate the impact of drive cycle and ambient temperature on modelled GPF soot accumulation and regeneration. The test data were obtained through real road testing in Chinese cities including Nanjing, Hainan and Harbin. Five 2.0 L gasoline turbo direct-injection (GTDI) prototype vehicles from several China Stage 6 applications were employed for the road tests. The results of the testing indicated that a drive cycle with low engine speed and engine load, like a typical city road in rush hour traffic in Nanjing, had a low probability of generating high GPF temperatures (> 600 °C) and sufficient oxygen to regenerate the GPF.
Technical Paper

Property and Fiber Orientation Determination for Carbon Fiber Composite

2018-04-03
2018-01-1216
Unexpected severe failures occur during the warm forming procedure of carbon fiber material due to the existence of extremely large deformation/strain. To evaluate this failure, a good understanding the accurate material property under certain loading is important to evaluate the forming feasibility of carbon fiber material. Also, a clear connection between the fiber orientation and the material property helps to increase the accuracy of the forming prediction. Therefore, an experimental test is needed to evaluate the material property as well as the fiber orientation. In this paper, a uniaxial tension test for the prepreg carbon fiber under the warm forming condition is performed. A halogen lamp is used to heat the specimen to reach the warm forming condition. A 3D Digital Image Correlation (3D-DIC) is utilized to measure the material property and the fiber orientation in this test, along with a DIP system.
Technical Paper

Driver Identification Using Multivariate In-vehicle Time Series Data

2018-04-03
2018-01-1198
All drivers come with a driving signature during a driving. By aggregating adequate driving data of a driver via multiple driving sessions, which is already embedded with driving behaviors of a driver, driver identification task could be treated as a supervised machine learning classification problem. In this paper, we use a random forest classifier to implement the classification task. Therefore, we collected many time series signals from 60 driving sessions (4 sessions per driver and 15 drivers totally) via the Controller Area Network. To reduce the redundancy of information, we proposed a method for signal pre-selection. Besides, we proposed a strategy for parameters tuning, which includes signal refinement, interval feature extraction and selection, and the segmentation of a signal. We also explored the performance of different types of arrangement of features and samples.
Technical Paper

Experimental Investigation on the Influence of Pressure Wheel Design on Heat Dissipation for a Laser Robotic End of Arm Tooling

2018-04-03
2018-01-1235
The initiative of this paper is focused on improving the heat dissipation from the pressure wheel of a laser welding assembly in order to achieve a longer period of use. The work examines the effects of different geometrical designs on the thermal performance of pressure wheel assembly during a period of cooling time. Three disc designs were manufactured for testing: Design 1 – a plain wheel, Design 2 – a pierced wheel, and Design 3 – a wheel with ventilating vanes. All of the wheels were made of carbon steel. The transient thermal reaction were compared. The experimental results indicate that the ventilated wheel cools down faster with the convection in the ventilated channels, while the solid plain wheel continues to possess higher temperatures. A comparison among the three different designs indicates that the Design 3 has the best cooling performance.
Technical Paper

Ion Current Measurement of Diluted Combustion Using a Multi-Electrode Spark Plug

2018-04-03
2018-01-1134
Close-loop feedback combustion control is essential for improving the internal combustion engines to meet the rigorous fuel efficiency demands and emission legislations. A vital part is the combustion sensing technology that diagnoses in-cylinder combustion information promptly, such as using cylinder pressure sensor and ion current measurement. The promptness and fidelity of the diagnostic are particularly important to the potential success of using intra-cycle control for abnormal cycles such as super knocking and misfiring. Many research studies have demonstrated the use of ion-current sensing as feedback signal to control the spark ignition gasoline engines, with the spark gap shared for both ignition and ion-current detection. During the spark glow phase, the sparking current may affect the combustion ion current signal. Moreover, the electrode gap size is optimized for sparking rather than measurement of ion current.
Technical Paper

Improving Transient Torque Response for Boosted Engines with VCT and EGR

2018-04-03
2018-01-0861
Modern gasoline engines have increased part-load fuel economy and specific power output through technologies such as downsizing, turbocharging, direct injection, and exhaust gas recirculation. These engines tend to have higher sensitivity to driving behavior because of the steady-state efficiency versus output characteristics (e.g., sweet spot at lower output) and the dynamic response characteristics (e.g., turbo lag). It has been observed that the technologies aimed at increased engine efficiency may improve fuel economy for less aggressive cycles and drivers while hurting fuel economy for more aggressive cycles and drivers. The higher degrees of freedom in these engines and the increased sensitivity make controls and calibration more complex and more important at the same time.
Technical Paper

On the Robustness of Adaptive Nonlinear Model Predictive Cruise Control

2018-04-03
2018-01-1360
In order to improve the vehicle’s fuel economy while in cruise, the Model Predictive Control (MPC) technology has been adopted utilizing the road grade preview information and allowance of the vehicle speed variation. In this paper, a focus is on robustness study of delivered fuel economy benefit of Adaptive Nonlinear Model Predictive Controller (ANLMPC) reported earlier in the literature to several noise factors, e.g. vehicle weight, fuel type etc. Further, the vehicle position is obtained via GPS with finite precision and source of road grade preview might be inaccurate. The effect of inaccurate information of the road grade preview on the fuel economy benefits is studied and a remedy to it is established.
Technical Paper

Stress Analysis on the Single-Lap SPR- Adhesive Hybrid Joint

2018-04-03
2018-01-1445
Self-pierced rivet (SPR) and adhesive are two important joining technologies widely used in automobile industry, and they are often used together to form a hybrid joint. SPR and adhesives can often be used in close proximity in a component, leading to an interaction of the two joints. This interaction can influence the corrosion and noise, vibration and harshness (NVH) characteristics of the structure, as well as its strength and durability. In this paper, the stress distribution in an SPR-adhesive hybrid joint is evaluated by using the finite element method, and then compared with that in an adhesive joint. Results indicate that the stress concentrates at the edge of adhesive layer in hybrid joint and adhesive joint and around the rivet in an SPR joint. The effect of rivet is numerically investigated by either removing the rivet from the hybrid joint or changing the position of the rivet on the overlapping area.
Technical Paper

Development of a Thermal Fatigue Test Bench for Cylinder Head Materials

2018-04-03
2018-01-1410
An innovative specimen design and test system for thermal fatigue (TF) analysis is developed to compare the fatigue behavior of different cylinder head materials under realistic cyclic thermal loadings. Finite element analyses were performed to optimize the specimen geometry and thermal cycles. The reduced section of the TF specimen is heated locally by a high frequency induction heater and cooled by compressed air. The mechanical strain is then induced internally by the non-uniform thermal gradient generated within the specimen to closely simulate what valve bridges in cylinder heads experience in real operation. The resulting fatigue life is a function not only of the inherent fatigue resistance of the alloys, but also of other relevant properties such as thermal conductivity, modulus of elasticity, and coefficient of thermal expansion. This test is an essential tool for comparing different alloys for thermal fatigue applications.
Technical Paper

Technical Analysis of Severe Cornering Induced Tire Wear on Vehicle Limit Handling through Repeatable On-Track Vehicle Testing

2018-04-03
2018-01-0558
In repeated physical testing of vehicles at or near their handling limit, tire shoulder wear occurs that is not typical of normal customer use. It has been observed for decades that this type of severe cornering induced tire wear can have a significant effect on the force and moment characteristics of tires. In this study, the severe cornering wear effect was studied by testing vehicles in a highly controlled manner using a robot steering controller. This testing shows how vehicle response to the exact same steering input changes significantly as the number of runs on the same tires accumulates. In fact, vehicles were found to not lift tires from the ground in initial runs then tip-up hard onto outriggers in later runs as the tires are abraded. Additionally, for one vehicle configuration an additional run was made with tires that had accumulated 16,000 km (10,000 miles) of normal customer usage.
Technical Paper

Finite Element Analysis and Test Correlation for Pressing and Staking of Planetary Gear Pinion Shaft

2018-04-03
2018-01-0481
During the assembly process of planetary gears, the pinion shaft is initially pressed in to the planetary carrier and then staking is performed to fix the pinion shaft to the carrier. The main purpose of the staking process is to prevent the movement of the pinion shaft during transmission operation. During assembly there should be minimal distortion of the assembly. The press-in process, pinion shaft and carrier are subjected to extremely high frictional loading due to the interference fit. The staking process permanently deforms the pinion shaft top and bottom ends, forming a protrusion that holds the shaft in position. The pinion shaft needs to sustain operational loads exerted by helical planetary gears, which tend to push the carrier flange out of position during operation. Staking length, staking force and interference between shaft and carrier hole are the critical parameters, which determine the maximum axial force that the pinion shaft can withstand.
Technical Paper

A Packaging Layout to Mitigate Crosstalk for SiC Devices

2018-04-03
2018-01-0462
SiC devices have inherent fast switching capabilities due to their superior material properties, and are considered potential candidates to replace Si devices for traction inverters in electrified vehicles in future. However, due to the comparatively low gate threshold voltage, SiC devices may encounter oscillatory false triggering especially during fast switching. This paper analyzed the causes of false triggering, and also studied the impact of a critical parasitic parameter - common source inductance. It is shown that crosstalk is the main cause for the false triggering in the case and some positive common source inductance help to mitigate the crosstalk issue. A packaging layout method is proposed to create the positive common source inductance through layout of control terminals / busbars, and/or the use of control terminal bonded wires at different height.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets Made with Different Processing Conditions

2018-04-03
2018-01-1237
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets made with different processing conditions are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints without clearance hole and lap-shear specimens with stripped FDS joints with clearance hole were made and then tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints without clearance hole (with gap) and the stripped FDS joints with clearance hole under quasi-static and cyclic loading conditions. The fatigue failure mode of the FDS joints without clearance hole (with gap) in lap-shear specimens is similar to those with clearance hole. The fatigue lives of lap-shear specimens with FDS joints without clearance hole are lower than those with clearance hole for given load ranges under cyclic loading conditions.
X