Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Towards Future Vehicle Diagnostics in Software-Defined Vehicles

2024-07-02
2024-01-2981
Software will lead the development and life cycle of vehicles in the future. Nowadays, more and more software is being integrated into a vehicle, evolving it into a Software-Defined Vehicle (SDV). Automotive High Performance Computers (HPCs) serve as enablers by providing more computing infrastructure which can be flexibly used inside a vehicle. However, this leads to a complex vehicle system that needs to function today and in the future. Detecting and rectifying failures as quickly as possible is essential, but existing diagnostic approaches based on Diagnostic Trouble Codes (DTCs) are not designed for such complex systems and lack of flexibility. DTCs are predefined during vehicle development and changes to vehicle diagnostics require a large amount of modification work. Moreover, diagnostics are not intended to handle dynamically changing software systems and have shortcomings when applied to in-vehicle software systems.
Technical Paper

Investigation of Stator Cooling Concepts of an Electric Machine for Maximization of Continuous Power

2024-07-02
2024-01-3014
With the automotive industry's increasing focus on electromobility and the growing share of electric cars, new challenges are arising for the development of electric motors. The requirements for torque and power of traction motors are constantly growing, while installation space, costs and weight are increasingly becoming limiting factors. Moreover, there is an inherent conflict in the design between power density and efficiency of an electric motor. Thus, a main focus in today's development lies on space-saving and yet effective and innovative cooling systems. This paper presents an approach for a multi-physical optimization that combines the domains of electromagnetics and thermodynamics. Based on a reference machine, this simulative study examins a total of nine different stator cooling concepts varying the cooling duct positions and end-winding cooling concepts.
Technical Paper

Corrosion Prediction Model for Electrical Components in Automobiles

2024-01-16
2024-26-0307
Salt Spray Test is being used since 1930’s to accelerate the corrosion testing of materials and to understand the longevity of applied coating. The sample in this kind of test is exposed to a salt mist in a controlled environment and its corrosion resistance is evaluated by measuring the corrosion rate. The Wet-Dry cycle in Salt Spray Test has the ability to simulate the drying and wetting which occurs in real driving scenario, leading to formation of a film of corrosion products which is useful in analyzing the kinetics of electrochemical reaction. Despite the advancement in severity of these tests to understand the atmospheric corrosion phenomena, they still consume time and resources. Secondly, sometimes these kind of tests do not consider into account the effect of Temperature, Humidity and other chemicals in play. Thus, numerical simulation plays a pivotal role in digitalizing the corrosion analysis to a certain extent.
Technical Paper

Digital Methodology for Simulating Autonomous Vehicle Sensor Cleaning

2024-01-16
2024-26-0006
The automotive world is progressing fast towards autonomous vehicles making sensors one of the critical components. There is a requirement for constant exchange of information between the vehicle and its surrounding environment, which is assisted by sensors such as Camera, LiDAR, and RADAR. However, exposure to harsh environmental conditions such as rain, dirt, snow, and bird droppings can hamper the functioning of the sensors and in turn interrupt accurate vehicle maneuvers. Sensor-cleaning mechanisms are required to be tested under various weather conditions and vehicle operating situations. Besides wind tunnel tests, digitalizing this whole process becomes important to take decision on design changes in early vehicle development stage. This work presents a digital methodology to test the LiDAR cleaning system in the advent of mud clearing at different vehicle speeds. The cleaning mechanism consists of a telescopic nozzle placed above the LiDAR translating back and forth.
Journal Article

Comprehensive Evaluation of Logging Frameworks for Future Vehicle Diagnostics

2023-06-26
2023-01-1223
More and more applications (apps) are entering vehicles. Customers would like to have in-car apps in their infotainment system, which they already use regularly on their smartphones. Other apps with new functionalities also inspire vehicle customers, but only as long as the customer can utilize them. To ensure customer satisfaction, it is important that these apps work and that failures are found and corrected as quickly as possible. Therefore, in-car apps also implicate requirements for future vehicle diagnostics. This is because current vehicle diagnostic methods are not designed for handling dynamic software failures of apps. Consequently, new diagnostic methods are needed to support the diagnosis of in-car apps. Log data are a central building block in software systems for system health management or troubleshooting. However, there are different types of log data and log environment setups depending on the underlying system or software platform.
Technical Paper

UAM Icing: Ice Accretion Experiments and CFD Icing Simulations on Rotors for eVTOL Unmanned Aircraft

2023-06-15
2023-01-1391
Urban air mobility (UAM) is a fast-growing industry that utilizes electric vertical take-off and landing (eVTOL) technologies to operate in densely populated urban areas with limited space. However, atmospheric icing serves as a limitation to its operational envelope as in-flight icing can happen all year round anywhere around the globe. Since icing in smaller aviation systems is still an emerging topic, there is a necessity to study icing of eVTOL rotors specifically. Two rotor geometries were chosen for this study. A small 15-inch rotor was selected to illustrate a multirotor UAV drone, while a large 80-inch rotor was chosen to represent a UAM passenger aircraft. The ice accretion experiments were conducted in an icing wind tunnel on the small 15-inch rotor. The icing simulations were performed using FENSAP-ICE. The ice accretion simulations of the 15-inch rotor sections at –5 °C show a large, rather streamlined ice shape instead of the expected glaze ice characteristics.
Technical Paper

The Potential of Data-Driven Engineering Models: An Analysis Across Domains in the Automotive Development Process

2023-04-11
2023-01-0087
Modern automotive development evolves beyond artificial intelligence for highly automated driving, and toward an interconnected manifold of data-driven development processes. Widely used analytical system modelling struggles with rising system complexity, invoking approaches through data-driven system models. We consider these as key enablers for further improvements in accuracy and development efficiency. However, literature and industry have yet to thoroughly discuss the relevance and methods along the vehicle development cycle. We emphasize the importance of data-driven system models in their distinct types and applications along the developing process, from pre-development to fleet operation. Data-driven models have proven in other works to be fast approximators, of high accuracy and adaptive, in contrast to physics-based analytical approaches across domains.
Technical Paper

Challenges and Opportunities of Future Vehicle Diagnostics in Software-Defined Vehicles

2023-04-11
2023-01-0847
The automotive industry changes rapidly. New players, concepts, and technologies from the Information Technology (IT) domain enter the market and software receives a high priority. Inside the vehicle, the number of components, which consist mostly of software, are increasing and more and more software-based functions are offered. In addition, High Performance Computers (HPCs) are continuing to be integrated into vehicles. These aspects lead to several challenges with current vehicle diagnostics, but also enable new opportunities in that field. However, in the specific area of vehicle diagnostics, there exists only very limited literature that considers current challenges and new possibilities for future vehicle diagnostics. Some literature deals with the general automotive system design or shows results from about five years ago. The viewpoints of an Original Equipment Manufacturer (OEM) are not included there.
Technical Paper

Efficient Post-Processing Method for Identification of Local Hotspots in 3D CFD Simulations

2022-06-14
2022-37-0005
Knocking is one of today’s main limitations in the ongoing efforts to increase efficiency and reduce emissions of spark-ignition engines. Especially for synthetic fuels or any alternative fuel type in general with a much steeper increase of the knock frequency at the KLSA, such as hydrogen, precise knock prediction is crucial to exploit their full potential. This paper therefore proposes a post-processing tool enabling further investigations to continuously gain better understanding of the knocking phenomenon. In this context, evaluation of local auto-ignitions preceding knock is crucial to improve knowledge about the stochastic occurrence of knock but also identify critical engine design to further optimize the geometry. In contrast to 0D simulations, 3D CFD simulations provide the possibility to investigate local parameters in the cylinder during the combustion.
Technical Paper

Data-Driven Modeling: An AI Toolchain for the Powertrain Development Process

2022-03-29
2022-01-0158
Predictive physical modeling is an established method used in the development process for automotive components and systems. While accurate predictions can be issued after tuning model parameters, long computation times are expected depending on the complexity of the model. As requirements for components and systems continuously increase, new optimization approaches are constantly being applied to solve multidimensional objectives and resulting conflicts optimally. Some of those approaches are deemed not feasible, as the computational times for required single predictions using conventional simulation models are too high. To address this issue it is proposed to use data-driven model such as neural networks. Previous efforts have failed due to sparse data sets and resulting poor predictive ability. This paper introduces an AI Toolchain used for data-driven modeling of combustion engine components. Two methods for generating scalable and fully variable datasets will be shown.
Journal Article

Pad Correction Estimation around 5 Belt Wind Tunnel Wheel Belts Using Pressure Tap Measurement and Mathematical Pressure Distribution Model

2022-03-29
2022-01-0902
5 belt wind tunnels are the most common facility to conduct the experimental aerodynamics development for production cars. Among aerodynamic properties, usually drag is the most important development target, but lift force and its front/rear balance is also important for vehicle dynamics. Related to the lift measurement, it is known that the “pad correction”, the correction in the lift measurement values for the undesirable aerodynamic force acting on wheel belt surface around the tire contact patch, must be accounted. Due to the pad correction measurement difficulties, it is common to simply subtract a fixed amount of lift values from measured lift force. However, this method is obviously not perfect as the pad corrections are different for differing vehicle body shapes, aerodynamic configurations, tire sizes and shapes.
Technical Paper

Experimental and Numerical Investigation of Rim Aerodynamics

2022-03-29
2022-01-0891
The automotive industry is facing new emission regulations, changing customer preferences and technology disruptions. All have in common, that external aerodynamics plays a crucial role to achieve emission limits, reduce fuel consumption and extend electric driving range. Probably the most challenging components in terms of numerical aerodynamic drag prediction are the wheels. Their contribution to the overall pressure distribution is significant, and the flow topology around the wheels is extremely complicated. Furthermore, deltas between different rim designs can be very small, normally in the range of only a few drag counts. Therefore, highly accurate numerical methods are needed to predict rim rankings and deltas. This paper presents experimental results of four different production rim designs, mounted to a modified production car. An accurate representation of the loaded, deformed tire geometry is used in all calculations for comparable conditions between wind tunnel and CFD.
Technical Paper

Analytical Methodology to Derive a Rule-Based Energy Management System Enabling Fuel-Optimal Operation for a P24-Hybrid

2021-09-21
2021-01-1254
The electric range of plug-in hybrids as well as the installed electric power has steadily increased. With an electric power share of more than half of the overall system power, concepts of hybrid electric vehicles with at least two electric machines come into focus. Especially the concept of adding an individual electric axle to a state-of-the-art parallel hybrid, such as a P2-hybrid, is promising. However, the system complexity of a so-called P24-hybird increases significantly because the number of possible system states rises. This leads to an increased development and calibration effort for an online energy management. Especially a transfer from an optimized operating strategy to a rule-based energy management is challenging. Thus, a development framework for the calibration of an online energy management system (EMS) which is as fuel efficient as possible is needed.
Technical Paper

Model Release Process using Standardized Error Metrics for Validation of X-in-the-Loop Simulation Models

2021-09-21
2021-01-1148
The current automotive market is dynamic, leading to complex functionalities being incorporated into the control software of various components like engine, gearbox, battery, E-motor etc. This results in utilization of virtual environments for software testing to reduce the development time. The virtual platforms under the category X-in-the-Loop (XiL) e.g. Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) use simulated models to achieve a desired test goal. These component models must be rigorously validated to ensure the quality of XiL-Testing. Thus, it is essential to define a model release process that maintains model quality irrespective of the modeling approach used and the user. One of the challenges is to choose an appropriate Error Metric (EM) that sets criteria for model release. This paper proposes a combination of Theil’s Inequality Coefficient (TIC) and Unscaled Mean Bounded Relative Absolute Error (UMBRAE) as the EM.
Journal Article

Experimental and Numerical Analysis of Sunroof Buffeting of a Simplified Mercedes-Benz S-Class

2021-08-31
2021-01-1051
Sunroof buffeting is examined experimentally and numerically in this paper. Despite the fact that some consider the simulation process for sunroof buffeting to be mature, there remain substantial uncertainties even in recently published methodologies. Capturing the frequencies and especially the sound pressure levels correctly is essential if CFD simulations are intended to be used during early stages of a car development process. Numerous experimental results of sunroof buffeting and the interior low-frequency characteristics of a 2013 Mercedes-Benz S-Class have been used to develop a simplified car model: a full-size S-Class model with slightly simplified geometries in the interior as well as at the exterior. To avoid the effects of numerous different materials in the interior, it is solely made from polyurethane and aluminum and built to maximize its structural rigidity and air-tightness.
Journal Article

Experimental and Numerical Investigation of a Full-Sized Aerodynamic Vehicle Model in Relation to Its Production Car

2021-04-06
2021-01-0963
In this paper, the differences between a production car of the 2018 A-class and an early stage vehicle model with a mostly similar outer skin are examined experimentally and numerically. The aerodynamic development of vehicles at Mercedes-Benz is divided into several phases. When comparing force coefficients differences can be observed between these distinct hardware stages as well as when comparing steady state simulations to wind tunnel measurements. In early phases when prototype vehicles are not yet available, so-called aero foam models are used. These are well-defined full-sized vehicle models, as the outer skin is milled from Polyurethane. Important aerodynamic characteristics such as a motor compartment with a cooling module, deflecting axles with rotatable wheels and underbody covers are represented.
Technical Paper

A Simulation Method for the Calculation of Water Condensation inside Charge Air Coolers

2021-04-06
2021-01-0226
The automotive industry uses supercharging in combination with various EGR strategies to meet the increasing demand for Diesel engines with high efficiency and low engine emissions. The charge air is heated by the EGR and the compression in the turbocharger to such an extent that high NOx emissions and a reduction in engine performance occurs. For this reason, the charge air cooler cools down the charge air before it enters the air intake manifold. In case of low pressure EGR, the charge air possesses a high moisture content and under certain operating conditions an accumulation of condensate takes place within the charge air cooler. During demanding engine loads, the condensate is entrained from the charge air cooler into the combustion chamber, resulting in misfiring or severe engine damage.
Technical Paper

Time Domain Full Vehicle Interior Noise Calculation from Component Level Data by Machine Learning

2020-09-30
2020-01-1564
Computational models directly derived from data gained increased interest in recent years. Data-driven approaches have brought breakthroughs in different research areas such as image-, video- and audio-processing. Often denoted as Machine Learning (ML), today these approaches are not widely applied in the field of vehicle Noise, Vibration and Harshness (NVH). Works combining ML and NVH mainly discuss the topic with respect to psychoacoustics, traffic noise, structural health monitoring and as improvement to existing numerical simulation methods. Vehicle interior noise is a major quality criterion for today’s automotive customers. To estimate noise levels early in the development process, deterministic system descriptions are created by utilizing time-consuming measurement techniques. This paper examines whether pattern-recognizing algorithms are suitable to conduct the prediction process for a steering system.
Technical Paper

Virtual Development of Injector Spray Targeting by Coupling 3D-CFD Simulations with Optical Investigations

2020-04-14
2020-01-1157
Further improvements of internal combustion engines to reduce fuel consumption and to face future legislation constraints are strictly related to the study of mixture formation. The reason for that is the desire to supply the engine with homogeneous charge, towards the direction of a global stoichiometric blend in the combustion chamber. Fuel evaporation and thus mixture quality mostly depend on injector atomization features and charge motion within the cylinder. 3D-CFD simulations offer great potential to study not only injector atomization quality but also the evaporation behavior. Nevertheless coupling optical measurements and simulations for injector analysis is an open discussion because of the large number of influencing parameters and interactions affecting the fuel injection’s reproducibility. For this purpose, detailed numerical investigations are used to describe the injection phenomena.
Technical Paper

Discretization and Heat Transfer Calculation of Engine Water Jackets in 1D-Simulation

2020-04-14
2020-01-1349
The industry is working intensively on the precision of thermal management. By using complex thermal management strategies, it is possible to make engine heat distribution more accurate and dynamic, thereby increasing efficiency. Significant efforts are made to improve the cooling efficiency of the engine water jacket by using 3D CFD. As well, 1D simulation plays a significant role in the design and analysis of the cooling system, especially for considering transient behaviour of the engine. In this work, a practice-oriented universal method for creating a 1D water jacket model is presented. The focus is on the discretization strategy of 3D geometry and the calculation of heat transfer using Nusselt correlations. The basis and reference are 3D CFD simulations of the water jacket. Guidelines for the water jacket discretization are proposed. The heat transfer calculation in the 1D-templates is based on Nusselt-correlations (Nu = Nu(Re, Pr)), which are derived from 3D CFD simulations.
X