Refine Your Search

Topic

Search Results

Technical Paper

Prototype Design and Testing of a Thermoplastic Steering Wheel Armature

2007-04-16
2007-01-1218
Basic automotive steering wheel armature design has been largely unchanged for years. A cast aluminum or magnesium armature is typically used to provide stiffness and strength with an overmolded polyurethane giving shape and occupant protection. A prototype steering wheel armature made from a unique recyclable thermoplastic eliminates the casting while meeting the same stiffness, impact, and performance criteria needed for the automotive market. It also opens new avenues for styling differentiation and flexibility. Prototype parts, manufacturing, and testing results will be covered.
Technical Paper

Application of a MIC Metallic Flake ASA/PC Weatherable Resin Predictive Engineering Package

2006-04-03
2006-01-0135
The automotive industry continues to strive for mold-in-color (MIC) solutions that can provide metallic flake appearances. These MIC solutions can offer a substantial cost out opportunity while retaining a balance of weathering performance and physical properties. This paper discusses a predictive engineering package used to hide, minimize and eliminate flow lines. Material requirements and the methods used to evaluate flowline reduction and placement for visual inspection criteria are detailed. The Nissan Quest® luggage-rack covers are used to illustrate this application. The paper also explores how evolving predictive packages offer expanding possibilities.
Technical Paper

Towards Improved Halogen Lighting Performance using a Combination of High Luminous Flux Sources and a Lens Material Approach

2004-03-08
2004-01-0797
Currently, automobile manufacturers receive automotive headlamp assemblies from headlamp manufacturers with outer lenses produced of clear or slightly blue tinted polycarbonate. Such headlamp designed to provide optimized light output have very similar aesthetics, and leave little room to differentiate one car platform from another, using the outer lens color. With edge glow technology a car manufacturer can provide an appealing aesthetic look (edge glow effect) from the outer lens. Additionally, this technology can be used to improve the quality of the beam color emitted through the outer lens. Dependent on the chosen combination of halogen source and lens formulation, a range of beam colors spanning from halogen to HID is attainable, where the beam pattern and color continue to conform to the applicable SAE and ECE beam photometry and color standards and regulations.
Technical Paper

A Low Cost, Lightweight Solution for Soft Seamless Airbag Systems

2004-03-08
2004-01-1485
OEM and Tier One integrated suppliers are in constant search of cockpit system components that reduce the overall number of breaks across smooth surfaces. Traditionally, soft instrument panels with seamless airbag systems have required a separate airbag door and a tether or steel hinge mechanism to secure the door during a deployment. In addition, a scoring operation is necessary to ensure predictable, repeatable deployment characteristics. The purpose of this paper is to demonstrate the development and performance of a cost-effective soft instrument panel with a seamless airbag door that results in a reduced number of parts and a highly efficient manufacturing process. Because of the unique characteristics of this material, a cost-effective, lightweight solution to meet both styling requirements, as well as safety and performance criteria, can be attained.
Technical Paper

Predictive Weathering Tool for Color Formula Development

2003-03-03
2003-01-0798
A model has been developed and implemented at GE Plastics that predicts a material's color shift when weathered. The material's color shift is due to the summation of color shifts from each individual component. By individually measuring the change in each component's optical coefficients upon weathering and using a multiple light scattering model, one can predict the color shift of a material composed of mixtures of these components. The model has been shown to have a standard deviation of 0.4 to 0.9 when predicting color shifts E*, for PC-polyester copolymers, ABS, and ABS/PC blends using an automotive exterior test, SAE J1885, ASTM D 4674, and ASTM D 4459.
Technical Paper

Use of Parametric Modeling in the Development of Energy Absorber Applications

2002-03-04
2002-01-1226
Automotive styling and performance trends continue to challenge engineers to develop cost effective bumper systems that can provide efficient energy absorption and also fit within reduced package spaces. Through a combination of material properties and design, injection-molded engineering thermoplastic (ETP) energy absorption systems using polycarbonate/polybutylene terephthalate (PC/PBT) alloys have been shown to promote faster loading and superior energy absorption efficiency than conventional foam systems. This allows the ETP system to provide the required impact protection within a smaller package space. In order to make optimal use of this efficiency, the reinforcing beam and energy absorber (EA) must be considered together as an energy management system. This paper describes the development of a predictive tool created to simplify and shorten the process of engineering efficient and cost effective beam/EA energy management systems.
Technical Paper

Conductive Plastics Leading Fuel Door Technology

2002-03-04
2002-01-0278
This paper will discuss, compare, and contrast current materials, designs, and manufacturing options for fuel filler doors. Also, it will explore the advantages of using conductive thermoplastic substrates over other materials that are commonly used in the fuel filler door market today. At the outset, the paper will discuss the differences between traditional steel fuel filler doors, which use an on-line painting process, and fuel filler doors that use a conductive thermoplastic substrate and require an in-line or off-line painting process. After reviewing the process, this paper will discuss material options and current technology. Here, we will highlight key drivers to thermoplastics acceptance, and look at the cost saving opportunities presented by the inline paint process option using a conductive thermoplastic resin, as well as benefits gained in quality control, component storage and coordination.
Technical Paper

Predicting the Bumper System Response of Engineering Thermoplastic Energy Absorbers with Steel Beams

2002-03-04
2002-01-1228
An efficient energy absorber (EA) will absorb impact energy through a combination of elastic and plastic deformation. However, the EA is typically coupled with a steel reinforcing beam, which can also elastically and plastically deform during an impact event. In order to design and optimize an EA/Beam system that will meet the specified vehicle impact requirements, the response of the entire assembly must be accurately predicted. This paper will describe a finite element procedure and material model that can be used to predict the impact response of a bumper system composed of an injection molded thermoplastic energy absorber attached to a steel beam. The first step in the process was to identify the critical material, geometric, and boundary condition parameters involved in the EA and Beam individually. Next, the two models were combined to create the system model. Actual test results for 8km/hr.
Technical Paper

Moldfilling Analyses: When to Use Them, What They Tell You

1999-03-01
1999-01-0279
Engineering thermoplastics are increasingly being used in automotive applications; many of whose designs are very complex and can pose unique challenges in manufacturing. To help products reach market faster, with better quality and lower cost, use of predictive engineering methods is becoming increasingly common. The purpose of this paper is to review a specific predictive tool: moldfilling analysis. This paper will outline the technology, what is required to use it properly, what issues the technology is capable of addressing, and what other tools are available for addressing advanced issues.
Technical Paper

Thermoplastic Materials for Throttle Body Applications

1999-03-01
1999-01-0316
Use of thermoplastic materials for throttle body applications can offer substantial weight, cost, and integration benefits. This paper will discuss the many elements that comprise materials selection, as well as the design and testing of composite throttle bodies. Polyetherimide (PEI), polyphenylene sulfide (PPS), and polybutylene terephthalate (PBT) materials will be discussed and compared as candidates for automotive throttle bodies. The focus areas that will be covered in this paper include: Materials Selection - The criteria for materials selection will be discussed and the properties of candidate thermoplastics compared with key requirements of throttle body applications. Bore and Plate Dimensional Stability and Consistency - The effects of thermal cycling, coefficient of thermal expansion, humidity, and design will be discussed, as well as their relation to bore/plate air leakage.
Technical Paper

Consistency of Thermoplastic Bumper Beam Impact Performance

1998-02-23
980113
This paper will address several critical aspects of bumper system performance, including vehicle damage protection and crash-severity sensing considerations, energy-absorption capacity and efficiency, and low-speed impact consistency and sensitivity to temperature changes. The objective is to help engineers and designers establish a realistic perspective of the capability of the various technologies based on actual test performance. The scope of the evaluation will include a comparison of several bumper-beam material constructions when subjected to a 16-km/hr swinging barrier impact over a range of temperatures the bumper could see in service (-30 to 60C).
Technical Paper

First One-Piece, Injection-Molded Thermoplastic Front-Bumper System for a Light Truck

1998-02-23
980107
The first single-piece, injection-molded, thermoplastic, front bumper for a light truck provides improved performance and reduced cost for the 1997 MY Explorer® Ltd. and 1988 MY Mountaineer® truck from Ford Motor Company. Additionally, the system provides improved impact performance, including the ability to pass 5.6 km/hr barrier impact tests without damage. Further, the advanced, 1-piece design integrates fascia attachments, reducing assembly time, and weighs 8.76 kg/bumper less than a baseline steel design. The complete system provides a cost savings vs. extruded aluminum and is competitive with steel bumpers.
Technical Paper

Abusive Testing of Thermoplastic vs. Steel Bumpers Systems

1998-02-23
980106
Over the last decade, on small- and medium-size passenger cars, a new class of front bumper - injection or blow molded from engineering thermoplastics - has been put into production use. These bumper systems provide full 8-km/hr federal pendulum and flat-barrier impact protection, as well as angled barrier protection. Thermoplastic bumpers, offering weight, cost, and manufacturing advantages over conventional steel bumper systems, also provide high surface finish and styling enhancements. However, there remain questions about the durability and engineering applicability of thermoplastic bumper systems to heavier vehicles. This paper presents results of a preliminary study that examines the durability of thermoplastic bumpers drawn from production lots for much lighter compact, and mid-size passenger cars against baseline steel bumper systems currently used on full-size pickup truck and sport-utility vehicles (SUVs). Bumpers were subjected to U.S.
Technical Paper

Integrated Energy-Management Systems:Market Trends, OEM Needs, & Business Opportunities for the Tier 1 Community

1998-02-23
980110
Recent vehicle design trends require bumper systems to be crashworthy under more demanding circumstances, e.g. tighter package space, heavier vehicle mass, and wider rail spans. Meanwhile, pressure to reduce cost and weight of bumpers continues at a time when roles in the supplier community are changing. These factors have combined to increase the importance of optimizing bumper design and material properties for specific platforms. Materials suppliers have responded by developing a range of specialized engineering thermoplastic (ETP) resins that can help meet increasing performance requirements yet also offer the potential for improved manufacturing productivity, significant weight savings, and systems cost reductions. Material suppliers have also increased the level of technical design support provided to OEMs and 1st Tier suppliers.
Technical Paper

Development of a Blow Molded, Thermoplastic Front Bumper System Offering Angled Barrier Protection

1997-02-24
970486
A new front bumper, blow molded from an engineering thermoplastic, is being used to provide full 8 km/h federal pendulum and flat-barrier impact protection, as well as angled barrier protection on a small passenger car. The low intrusion bumper is compatible with the vehicle's single-sensor airbag system and offers a 5.8 kg mass savings compared with competitive steel/foam systems. This paper will describe the design and development of the bumper system and the results achieved during testing.
Technical Paper

A Structural Instrument Panel from Glass-Mat Thermoplastic for the Small-Car Market

1997-02-24
970726
Designers and engineers encounter many challenges in developing vehicles for the small-car market. They face constant pressure to reduce both mass and cost while still producing vehicles that meet environmental and safety requirements. At the same time, today's discriminating consumers demand the highest quality in their vehicles. To accommodate these challenges, OEMs and suppliers are working together to improve all components and systems for the high-volume small-car market. An example of this cooperative effort is a project involving an integrated structural instrument panel (IP) designed to meet the specific needs of the small-car platform. Preliminary validation of the IP project, which uses a compression-molded, glass-mat-thermoplastic (GMT) composite and incorporates steel and magnesium, indicates it will significantly reduce part count, mass, assembly time, and overall cost.
Technical Paper

Design and Development of an Engineering Thermoplastic Energy Absorbing System for Automotive Knee Bolsters

1997-02-24
970725
Traditional knee bolster designs consist of a first-surface plastic component covered by paint or vinyl skin and foam, with a subsurface steel plate that transfers knee loads to 2 steel crush brackets. The design was developed to meet FMVSS 208 and OEM requirements. More recently, technological developments have allowed for the steel plate to be replaced by a ribbed plastic structure, which offers cost and weight savings to the instrument panel system. However, it is still a hybrid system that combines plastic with the 2 steel crush brackets. This paper will detail the development of an all-plastic design, which consolidates the plastic ribbed reinforcement plate with the 2 steel crush cans in a single engineering thermoplastic component. The new system is expected to offer further cost and weight savings.
Technical Paper

Correlation of Finite-Element Analysis to Free-Motion Head-Form Testing for FMVSS 201U Impact Legislation

1997-02-24
970163
Automotive engineers and designers are working to develop pillar-trim concepts that will comply with the upper interior head-impact legislation, FMVSS 201U. However, initial development cycles have been long and repetitive. A typical program consists of concept development, tool fabrication, prototype molding, and impact testing. Test results invariably lead to tool revisions, followed by further prototypes, and still more impact testing. The cycle is repeated until satisfactory parts are developed - a process which is long (sometimes in excess of 1 year) and extremely labor intensive (and therefore expensive). Fortunately, the use of finite-element analysis (FEA) can greatly reduce the concept-to-validation time by incorporating much of the prototype and impact evaluations into computer simulations. This paper describes both the correlation and validation of an FEA-based program to physical free-motion head-form testing and the predictive value of this work.
Technical Paper

Energy-Absorbing Thermoplastics for Head Impact Applications

1996-02-01
960154
The August 1996 expansion of FMVSS 201 established head impact performance criteria for upper interior components This standard has forced automotive manufacturers, designers, and suppliers to change their thinking for interiors, especially pillars, compliance with FMVSS 201 will require new, structural designs and energy-absorbing materials An ongoing study has examined the implications of FMVSS 201 and its effect on pillars The results of this study have demonstrated how energy-absorbing engineering thermoplastics can be used to meet and exceed the requirements of the head impact legislation through single-piece pillar trims
Technical Paper

Rationalizing Gas-Assist Injection Molding Processing Conditions

1995-02-01
950562
Gas-assist injection molding is a relatively new process. It is an extension of conventional injection molding and allows molders to make larger parts having projected areas or cross sectional geometries not previously possible using existing equipment. However, controlling the injection of the gas has been a concern. The plastics industry is attempting to establish logical techniques to set up and rationalize processing conditions for the method. Although gas injection equipment permits a number of adjustments, an optimum processing window must be established to provide control and repeatability of the process to mold consistent, acceptable parts. This paper describes a strategy and equipment for rationalizing and accurately controlling gas injection processing conditions that are applicable regardless of the type of molding machine or processing license a molder is using.
X