Refine Your Search

Topic

Search Results

Technical Paper

Towards Improved Halogen Lighting Performance using a Combination of High Luminous Flux Sources and a Lens Material Approach

2004-03-08
2004-01-0797
Currently, automobile manufacturers receive automotive headlamp assemblies from headlamp manufacturers with outer lenses produced of clear or slightly blue tinted polycarbonate. Such headlamp designed to provide optimized light output have very similar aesthetics, and leave little room to differentiate one car platform from another, using the outer lens color. With edge glow technology a car manufacturer can provide an appealing aesthetic look (edge glow effect) from the outer lens. Additionally, this technology can be used to improve the quality of the beam color emitted through the outer lens. Dependent on the chosen combination of halogen source and lens formulation, a range of beam colors spanning from halogen to HID is attainable, where the beam pattern and color continue to conform to the applicable SAE and ECE beam photometry and color standards and regulations.
Technical Paper

Springback Study on a Stamped Fender Outer

2003-03-03
2003-01-0685
Springback study on a Dodge Ram fender outer panel is detailed in this paper. A simple measurement fixture is designed for the panel, wherein non-contact laser scan technology is applied The measurement data are compared with the original CAD design surface and deviation contour maps are obtained. Consistency of measurement is studied at different sections among three samples. Details of FEA simulations are outlined. The comparison between measurement and simulation prediction is summarized. A method to describe the consistency of measurement and the accuracy of simulation prediction is proposed. The targets for measurement consistency and simulation accuracy are verified. A sensitivity analysis is also performed to investigate various simulation input parameters.
Technical Paper

Lens Material Development for Improved Halogen Headlamp Visibility

2003-03-03
2003-01-0991
Automobile headlamps are highly controlled products that must meet various performance standards to be commercialized. The combination of the bulb and lens must emit acceptable color and light output. Commercially available headlamps use different types of bulbs but usually a clear or slightly tinted lens. In the past few years, high performance bulbs have been used. These are known as HID or xenon lamps and are characterized by their bluer color compared to standard halogen bulbs. This paper explores some of the possibilities that new lens material can offer in terms of design and aesthetics with little or no impact on lighting performance as tested per the Society of Automotive Engineers (SAE) J1383 [1]. Light stability of these new lens materials is also discussed.
Technical Paper

Daytime Running Lights (Drls)-A North American Success Story

2001-06-04
2001-06-0044
Many traffic collisions are the result of the driver's failure to notice the other vehicle. It is often cited in police reports that the driver "looked but did not see.'' The purpose of Daytime Running Lights (DRLs) is to increase the visual contrast of DRL-equipped vehicles. Visual contrast, which is the difference in brightness between two areas, is an important characteristic enabling a driver to detect objects. This paper begins with a brief regulatory history of DRLs in the U.S. and how General Motors Corporation (GM) introduced DRL-equipped vehicles. It also describes a DRL effectiveness study conducted by Exponent Failure Analysis Associates of San Francisco for General Motors Corporation. The study compared the collision rates of specific General Motors Corporation, Saab, Volvo and Volkswagen vehicles before and immediately after the introduction of DRLs. Since DRLs are not visible from behind a vehicle, rear-end collisions were not included in the study.
Technical Paper

A Parametric Approach for Rapid Design and Analysis of Automotive HVAC Defrost Systems

2001-03-05
2001-01-0584
The overall vision of this project was to develop a new technology that will be an enabler to reduce design and development time of HVAC systems by an order of magnitude. The objective initially was to develop a parametric model of an automotive HVAC Windshield Defrost Duct coupled to a passenger compartment. It can be used early on in the design cycle for conducting coarse packaging studies by quickly exploring “what-if” design alternatives. In addition to the packaging studies, performance of these design scenarios can be quickly studied by undertaking CFD simulation and analyzing flow distribution and windshield melting patterns. The validated geometry and CFD models can also be used as knowledge building tools to create knowledge data warehouses or repositories for precious lessons learned.
Technical Paper

Temperature Measurement Errors in Automotive Lighting

2001-03-05
2001-01-0859
This paper examines a variety of thermocouple and infrared measurement techniques as means of obtaining accurate and consistent temperature measurements within a headlamp system. While measuring temperature is straightforward in principle, in practice, these measurements are fraught with potential error. The paper summarizes a succession of experiments conducted at our Parts Design Center (formerly the Application Development Resource Center) in Pittsfield, MA. These experiments lead to the ability to accurately measure temperature at a given location within a lamp assembly. Using these studies and the resulting transfer functions as a foundation, a Design of Experiment (D.O.E.) is presented which explores the effect of a variety of headlamp design factors on the surface temperature of a headlamp reflector at a given location.
Technical Paper

Three-Dimensional Heat Transfer & Thermoelastic Deformation Predictions in Forward Lighting

2000-03-06
2000-01-1396
The thermal performance of an automotive forward-lighting assembly is predicted with a computational fluid-dynamics (CFD) program. A three-dimensional, steady-state heat-transfer model seeks to account for convection and radiation within the enclosure, conduction through the thermoplastic walls and lens, and external convection and radiation losses. The predicted temperatures agree well with experimental thermocouple and infrared data on the housing. Driven by the thermal expansion of the air near the bulb surface, counter-rotating recirculation zones are predicted within the enclosure. The highest temperatures in the plastic components are predicted on the inner surface of the shelf above the bulb where airflow rising from the hot bulb surface impinges.
Technical Paper

Cadillac DeVille Thermal Imaging Night Vision System

2000-03-06
2000-01-0323
The purpose of the Cadillac DeVille Night Vision System is to provide drivers with visual information beyond with the range of their headlamps. It can also help drivers see beyond the glare of oncoming vehicle’s headlamps. With increased visual range the driver may have more time to react to potentially dangerous situations. The system consists of a thermal imaging camera, a head-up display, and image controls. The camera senses temperature differences of objects in the road scene ahead and creates a thermal image of the scene. The head-up display projects this image onto the windshield creating a virtual image that appears at the front edge of the vehicle’s hood just below the driver’s line of sight. This paper will describe the system requirements and parameters of the 2000 Cadillac DeVille Night Vision system.
Technical Paper

Performance Evaluations of Polyolefins vs. Engineering Thermoplastics for Blow Molded Bumper Beams for Mid-Size Vehicles – Part II

1999-03-01
1999-01-1015
The consumption of blow molded bumpers for passenger vehicles is increasing, particularly for small to mid-size vehicles. The performance required for bumpers in this class of vehicles varies by geographic region, as “global” vehicles are increasingly specified outside of the United States. For this reason, it is important to understand the impact performance provided by materials that could be blow molded into bumpers for this class of vehicles. This paper will compare the relative performance of polycarbonate/polybutylene terephthalate (PC/PBT) alloys vs. polyolefins for impact protection, weight, and processing performance.
Technical Paper

Engineering Thermoplastic Energy Absorbers for Bumpers

1999-03-01
1999-01-1011
Automotive styling trends point to reduced bumper overhang, greater sweeps, and reduced overall package space for the bumper system. At the same time engineers are charged with improving bumper performance to reduce collision repair costs and enhance occupant safety further. Two key performance parameters for the bumper to meet these conflicting objectives are fast but controlled loading and efficient energy absorption (EA). The majority of today's North American passenger-car bumper systems consist of a reinforcing bar either of steel, aluminum, or composite construction, and an energy absorption media. The most widely used energy-absorber construction is made from an expanded-polypropylene foam (EPP). Honeycomb energy absorbers, which are made from an ethylene vinyl acetate (EVA) copolymer, are also still used on some of today's cars. This paper will address an alternative to the bumper energy absorber systems described above.
Technical Paper

I-Section Bumper with Improved Impact Performance from New Mineral-Filled Glass Mat Thermoplastic (GMT) Composite

1999-03-01
1999-01-1014
The I-Section bumper design has evolved over the past 10 years into a lightweight, low cost, high performance alternative to traditional bumper beams. Initial I-Section Bumpers were developed with 40% Chopped fiberglass GMT. Through the development of lower cost Mineral-Filled/Chopped fiberglass GMT, improved static load and dynamic impact performance results have been achieved in I-Section Bumper Designs.
Technical Paper

Consistency of Thermoplastic Bumper Beam Impact Performance

1998-02-23
980113
This paper will address several critical aspects of bumper system performance, including vehicle damage protection and crash-severity sensing considerations, energy-absorption capacity and efficiency, and low-speed impact consistency and sensitivity to temperature changes. The objective is to help engineers and designers establish a realistic perspective of the capability of the various technologies based on actual test performance. The scope of the evaluation will include a comparison of several bumper-beam material constructions when subjected to a 16-km/hr swinging barrier impact over a range of temperatures the bumper could see in service (-30 to 60C).
Technical Paper

First One-Piece, Injection-Molded Thermoplastic Front-Bumper System for a Light Truck

1998-02-23
980107
The first single-piece, injection-molded, thermoplastic, front bumper for a light truck provides improved performance and reduced cost for the 1997 MY Explorer® Ltd. and 1988 MY Mountaineer® truck from Ford Motor Company. Additionally, the system provides improved impact performance, including the ability to pass 5.6 km/hr barrier impact tests without damage. Further, the advanced, 1-piece design integrates fascia attachments, reducing assembly time, and weighs 8.76 kg/bumper less than a baseline steel design. The complete system provides a cost savings vs. extruded aluminum and is competitive with steel bumpers.
Technical Paper

Abusive Testing of Thermoplastic vs. Steel Bumpers Systems

1998-02-23
980106
Over the last decade, on small- and medium-size passenger cars, a new class of front bumper - injection or blow molded from engineering thermoplastics - has been put into production use. These bumper systems provide full 8-km/hr federal pendulum and flat-barrier impact protection, as well as angled barrier protection. Thermoplastic bumpers, offering weight, cost, and manufacturing advantages over conventional steel bumper systems, also provide high surface finish and styling enhancements. However, there remain questions about the durability and engineering applicability of thermoplastic bumper systems to heavier vehicles. This paper presents results of a preliminary study that examines the durability of thermoplastic bumpers drawn from production lots for much lighter compact, and mid-size passenger cars against baseline steel bumper systems currently used on full-size pickup truck and sport-utility vehicles (SUVs). Bumpers were subjected to U.S.
Technical Paper

Safety Related Testing and Results of Polycarbonate and Tempered Glass Non-Windshield Glazing Applications

1998-02-23
980863
This paper presents results from a series of tests that address safety related issues concerning vehicle glazing. These issues include occupant containment, head impact injury, neck injuries, fracture modes, and laceration. Component-level and full vehicle crash tests of standard and polycarbonate non-windshield glazing were conducted. The tests were conducted as part of a study to demonstrate that there is no decrease in the safety benefits offered by polycarbonate glazing when compared to current glazing. Readers of this paper will gain a broader understanding of the tests that are typically conducted for glazing evaluation from a safety perspective, as well as gain insight into the meaning of the results.
Technical Paper

Integrated Energy-Management Systems:Market Trends, OEM Needs, & Business Opportunities for the Tier 1 Community

1998-02-23
980110
Recent vehicle design trends require bumper systems to be crashworthy under more demanding circumstances, e.g. tighter package space, heavier vehicle mass, and wider rail spans. Meanwhile, pressure to reduce cost and weight of bumpers continues at a time when roles in the supplier community are changing. These factors have combined to increase the importance of optimizing bumper design and material properties for specific platforms. Materials suppliers have responded by developing a range of specialized engineering thermoplastic (ETP) resins that can help meet increasing performance requirements yet also offer the potential for improved manufacturing productivity, significant weight savings, and systems cost reductions. Material suppliers have also increased the level of technical design support provided to OEMs and 1st Tier suppliers.
Technical Paper

Development of an Advanced, Engineering Thermoplastic Step-Pad Bumper for a Sport Utility Vehicle

1997-02-24
970485
A conceptual step-pad bumper system has been designed for a sport utility vehicle. This bumper incorporates an all-thermoplastic solitary beam/fascia with a Class A finish and a replaceable, grained thermoplastic olefin (TPO) or urethane step pad. The rear beam is injection molded and the cover plate features integrated through-towing capabilities and electrical connections. The bumper is designed to pass FMVSS Part 581, 8 km/h impacts. The system can potentially offer a 5.0-13.6 kg weight savings at comparable costs to conventional step-pad bumper systems. This paper will detail the design and development of the concept and finite-element analysis (FEA) validation.
Technical Paper

Glass Drop Design for Automobile Windows - Design of Glass Contour, Shape, Drop Motion, and Motion Guidance Systems

1995-04-01
951110
This paper presents a new computerized approach for designing the automobile window glass contour, the glass drop motion, and the regulator systems. The three-dimensional geometrical relationship of the glass contour, the drop path, and its guidance system have been studied. Methods for barrel and helical drops are presented for optimizing the glass profile and drop path trajectories. Criteria for perfecting the glass contour are developed for shaping the profile of the vehicle clay model. Methods for correcting the glass contour and shape are presented. Examples are provided to illustrate how to improve the design. This approach integrates the development works of glass contour, drop motion and regulator systems. Through this design approach the window glass can fit and move perfectly in the door assembly.
Technical Paper

A Comparison of C-Shaped and I-Type Cross-Sections for Bumpers Using Compression Molded Thermoplastics

1994-03-01
940171
The C-section bumper design has developed through an evolutionary process and has come to be regarded as a reasonable geometry for frontal bumper impacts, especially for use with glass-filled sheet-stampable thermoplastic composite materials. C-section bumpers are now well proven and accepted in the automotive industry, performing satisfactorily in a variety of crash situations. A new and more complicated cross-section geometry (I-type with multiple ribbing) has recently been proposed for glass-filled thermoplastic composites. While, in some specialized cases, these highly engineered bumper cross-sections can be useful, they may not perform adequately in all reasonable crash scenarios. Further, it is important to consider manufacturing limitations and the realities of material performance in such complex geometries. Data will be presented to question the practical advantages of the use of ribbed bumper designs over the traditional C-section beam.
Technical Paper

Field Evaluation of Down-Gauged High Performance RIM Fascia Polymers

1993-03-01
930539
Reducing the wall thickness of automotive fascia offers cost and weight savings over those manufactured today. New high performance RIM polyurethane/urea and polyurea polymers with improved mechanical properties over conventional systems make down-gauging possible while maintaining specified performance.1 Adding low cost, high surface quality fillers to these polymers provides enhanced dimensional stability in fascia at reduced wall thickness, thus meeting ever increasing demands for lower cost and high quality. This paper describes validation studies of filled RIM fascia down-gauged 22% to 3.0 mm wall thickness and compares them to conventional fascia moulded at nominal 3.9 mm wall thickness. High performance polyurethane/urea, polyurea, and conventional polyurethane/urea each incorporating wollastonite, mica, or milled glass were tested. The data include “on-car position” moisture stability, painted impact at low temperature, and material processing.
X