Refine Your Search

Topic

Author

Search Results

Technical Paper

Prototype Design and Testing of a Thermoplastic Steering Wheel Armature

2007-04-16
2007-01-1218
Basic automotive steering wheel armature design has been largely unchanged for years. A cast aluminum or magnesium armature is typically used to provide stiffness and strength with an overmolded polyurethane giving shape and occupant protection. A prototype steering wheel armature made from a unique recyclable thermoplastic eliminates the casting while meeting the same stiffness, impact, and performance criteria needed for the automotive market. It also opens new avenues for styling differentiation and flexibility. Prototype parts, manufacturing, and testing results will be covered.
Technical Paper

Application of a MIC Metallic Flake ASA/PC Weatherable Resin Predictive Engineering Package

2006-04-03
2006-01-0135
The automotive industry continues to strive for mold-in-color (MIC) solutions that can provide metallic flake appearances. These MIC solutions can offer a substantial cost out opportunity while retaining a balance of weathering performance and physical properties. This paper discusses a predictive engineering package used to hide, minimize and eliminate flow lines. Material requirements and the methods used to evaluate flowline reduction and placement for visual inspection criteria are detailed. The Nissan Quest® luggage-rack covers are used to illustrate this application. The paper also explores how evolving predictive packages offer expanding possibilities.
Technical Paper

Experimental Investigation of a Thermal Preconditioning of a Car cabin

2005-05-10
2005-01-2057
This paper presents an experimental investigation of two passive thermal preconditioning technologies, pre-ventilation and solar shields, and a combination of both. A Design of Experiment (DOE) was defined in order to evaluate the influence of several parameters (air mass flow and air diffusion mode, size of the air extractors, location and type of solar shield) on the passengers' thermal comfort on entry into the car cabin and after a short A/C running time (10 min). Results show that solar shields are more efficient than pre-ventilation, which means that radiative heat transfers are more effective than the convective heat transfers, even with high air flows. The type of solar shields together with their location on the windows is also influential. After preconditioning, 10 minutes of air conditioning might reduce the air temperature at face level of the front passengers, compared to a non preconditioned car cabin.
Technical Paper

Energy Efficient R744 A/C System Thanks to Torque Estimation

2005-05-10
2005-01-2040
From 10 years, Valeo Climate Control leads R&D efforts to reduce green-house effect emissions due to automotive A/C systems. This paper deals with the development of an alternative A/C system using R744 refrigerant as the lowest Global Warming Potential refrigerant (GWP = 1) to replace existing R134a (GWP = 1300) technology. The paper will show main aspects of the new technology developed for alternate refrigerant and then will focus on control strategy for the A/C system which is a key point for thermodynamic cycle efficiency using R744. Firstly the R744 A/C system used for this study will be described, the concept of maximum COP high pressure linked to optimized R744 thermodynamic cycle will be explained, and the high pressure control strategy will be presented. Secondly the control optimization for the gas cooler fan will also be explained in order to reduce the electrical consumption.
Technical Paper

An Innovative Thermal Dashboard System

2004-03-08
2004-01-1383
This paper presents the results of a study into an innovative system using a new type of technology for the automotive domain with the aim of improving passengers' thermal comfort. A study of the thermal interactions between the cabin and its passengers shows that radiative heat transfers clearly contribute to the passengers' thermal discomfort during the first few minutes of a vehicle's use. Therefore, to limit this kind of heat exchange, an innovative A/C system combining a conventional automotive A/C loop and a Heat Pipe Dashboard Panel has been developed. This reduces the dashboard temperature rapidly, immediately after starting the A/C system (70°C to 10°C in 3 min).
Technical Paper

A Low Cost, Lightweight Solution for Soft Seamless Airbag Systems

2004-03-08
2004-01-1485
OEM and Tier One integrated suppliers are in constant search of cockpit system components that reduce the overall number of breaks across smooth surfaces. Traditionally, soft instrument panels with seamless airbag systems have required a separate airbag door and a tether or steel hinge mechanism to secure the door during a deployment. In addition, a scoring operation is necessary to ensure predictable, repeatable deployment characteristics. The purpose of this paper is to demonstrate the development and performance of a cost-effective soft instrument panel with a seamless airbag door that results in a reduced number of parts and a highly efficient manufacturing process. Because of the unique characteristics of this material, a cost-effective, lightweight solution to meet both styling requirements, as well as safety and performance criteria, can be attained.
Technical Paper

Inner Lens UV Vulnerablity Study

2004-03-08
2004-01-0800
To determine what effect (measured in haze), UV exposure has on polycarbonate inner lenses (coated and uncoated), when positioned behind qualifying (UV absorbent) and non-qualifying (UV transmitting) outer lens materials (clear and red). Plastic inner lenses are those covered by another material and are not exposed directly to sunlight.
Technical Paper

Bumper Systems Designed for Both Pedestrian Protection and FMVSS Requirements: Part Design and Testing

2004-01-08
2004-01-1610
This paper describes a bumper system designed to meet the current FMVSS (Federal Motor Vehicle Safety Standard) and ECE42 legislation as well as the European Enhanced Vehicle Safety Committee (EEVC) requirements for lower leg pedestrian impact protection [1] (The EEVC was founded in 1970 in response to the US Department of Transportation's initiative for an international program on Experimental Safety Vehicles. The EEVC steering committee, consisting of representatives from several European Nations, initiates research work in a number of automotive working areas. These research tasks are carried out by a number of specialist Working Groups who operate for over a period of several years giving advice to the Steering Committee who then, in collaboration with other governmental bodies, recommends future courses of action designed to lead to improved safety in vehicles).
Technical Paper

Evaluation of Aesthetic and Reflective Performance of Direct Metallized Resins for Automotive Lighting

2003-03-03
2003-01-0649
The aesthetic requirements for rear combination lamps have risen due to the increased use of optic free lens. The objective of this study was to develop a methodology to characterize the relative aesthetic performance for thermoplastic resins utilized for rear combination lamp housings. This study focuses upon the use of a direct metallization process. The results of this study will allow project engineers to better understand the relative performance of various materials.
Technical Paper

Lens Material Development for Improved Halogen Headlamp Visibility

2003-03-03
2003-01-0991
Automobile headlamps are highly controlled products that must meet various performance standards to be commercialized. The combination of the bulb and lens must emit acceptable color and light output. Commercially available headlamps use different types of bulbs but usually a clear or slightly tinted lens. In the past few years, high performance bulbs have been used. These are known as HID or xenon lamps and are characterized by their bluer color compared to standard halogen bulbs. This paper explores some of the possibilities that new lens material can offer in terms of design and aesthetics with little or no impact on lighting performance as tested per the Society of Automotive Engineers (SAE) J1383 [1]. Light stability of these new lens materials is also discussed.
Technical Paper

Influence of Various Heat Transfers on Passenger Thermal Comfort

2003-03-03
2003-01-1075
This paper presents the results of a study of the various thermal interactions between the automotive passenger compartment and the passengers, using the equivalent temperature concept. Radiative and convective heat exchanges are described. A technical proposal to improve the thermal comfort of passengers is also made.
Technical Paper

Predictive Weathering Tool for Color Formula Development

2003-03-03
2003-01-0798
A model has been developed and implemented at GE Plastics that predicts a material's color shift when weathered. The material's color shift is due to the summation of color shifts from each individual component. By individually measuring the change in each component's optical coefficients upon weathering and using a multiple light scattering model, one can predict the color shift of a material composed of mixtures of these components. The model has been shown to have a standard deviation of 0.4 to 0.9 when predicting color shifts E*, for PC-polyester copolymers, ABS, and ABS/PC blends using an automotive exterior test, SAE J1885, ASTM D 4674, and ASTM D 4459.
Technical Paper

Highly Predictive Accelerated Weathering of Engineering Thermoplastics

2003-03-03
2003-01-1192
Current accelerated weathering protocols such as SAE J1960 or ASTM G26 do not provide reliable, predictive results for engineering thermoplastics. Correlation factors among resin types and even different colors of a single resin have variations that are 60-100% of the mean at the 95% confidence level, making these tests useless for lifetime prediction or even reliable ranking of materials. We have developed improved conditions using CIRA/sodalime-filtered xenon arc, a more rain-like water spray, and occasional sponge-wiping of the samples. The data for gloss loss and color shift agree very well with Florida data giving a correlation factor of 3100±680 kJ/m2 (at 340 nm) per Florida year at the 95% confidence level. The acceleration factor is 7.6x.
Technical Paper

Bumper Systems Designed for Both Pedestrian Protection and FMVSS Requirements

2003-01-03
2003-01-0214
This paper describes a bumper system design that satisfies both current FMVSS legislation as well as the European Enhanced Vehicle Safety Committee (EEVC) requirements for lower leg pedestrian impact protection. The dual performance solution is achieved through a combination of material properties and design. Using Computer Aided Engineering (CAE) modeling, the performance of an injection molded energy absorber (EA) was analyzed for pedestrian protection requirements of knee bending angle, knee shear displacement, and tibia acceleration, 4Kph pendulum and barrier impacts (ECE42, FMVSS), and 8Kph pendulum and barrier impacts (CMVSS, FMVSS). The results demonstrate how an injection molded EA using polycarbonate/polybutyelene terephthalate (PC/PBT) resin (Figure 1) can meet both FMVSS and pedestrian safety requirements and can do so within a packaging space typical of today's vehicle styling.
Technical Paper

Use of Parametric Modeling in the Development of Energy Absorber Applications

2002-03-04
2002-01-1226
Automotive styling and performance trends continue to challenge engineers to develop cost effective bumper systems that can provide efficient energy absorption and also fit within reduced package spaces. Through a combination of material properties and design, injection-molded engineering thermoplastic (ETP) energy absorption systems using polycarbonate/polybutylene terephthalate (PC/PBT) alloys have been shown to promote faster loading and superior energy absorption efficiency than conventional foam systems. This allows the ETP system to provide the required impact protection within a smaller package space. In order to make optimal use of this efficiency, the reinforcing beam and energy absorber (EA) must be considered together as an energy management system. This paper describes the development of a predictive tool created to simplify and shorten the process of engineering efficient and cost effective beam/EA energy management systems.
Technical Paper

Conductive Plastics Leading Fuel Door Technology

2002-03-04
2002-01-0278
This paper will discuss, compare, and contrast current materials, designs, and manufacturing options for fuel filler doors. Also, it will explore the advantages of using conductive thermoplastic substrates over other materials that are commonly used in the fuel filler door market today. At the outset, the paper will discuss the differences between traditional steel fuel filler doors, which use an on-line painting process, and fuel filler doors that use a conductive thermoplastic substrate and require an in-line or off-line painting process. After reviewing the process, this paper will discuss material options and current technology. Here, we will highlight key drivers to thermoplastics acceptance, and look at the cost saving opportunities presented by the inline paint process option using a conductive thermoplastic resin, as well as benefits gained in quality control, component storage and coordination.
Technical Paper

Two-Shot and Overmolding Technology for Automotive Applications Using Engineering Thermoplastics

2002-03-04
2002-01-0274
There are a multitude of opportunities to utilize two-shot or overmolding technology in the automotive industry. Two-shot or overmolding a thermoplastic elastomer onto a rigid substrate can produce visually appealing, high quality parts. In addition, use of this technology can offer the molder significant reductions in labor and floor space consumption as well as a reduction in system cost. Traditionally, two-shot applications were limited to olefinbased TPE's and substrates, which often restricted rigidity, structure and gloss levels. With the development of thermoplastic elastomers that bond to engineering thermoplastics, two-shot molding can now produce parts that require higher heat, higher gloss and greater structural rigidity. This paper will outline engineering thermoplastics that bond with these new elastomers, discuss potential applications, and review circumstances that offer the best opportunity to call upon the advantages of two-shot and overmolding technology.
Technical Paper

Experimental Investigation to Determine The Effect of Laminated Evaporator's Tank Position on Heat Transfer and Pressure Drop

2002-03-04
2002-01-1029
Experiments were conducted on laminate evaporator to determine the effect of the tank position on the evaporator heat transfer and pressure drop. The experiments were conducted on the evaporator calorimeter facility that is fully instrumented per ASHRAE specifications. A typical 4 pass laminate evaporator was used for testing. The refrigerant used for this investigation was R-134a. An oil circulation ratio of 2% was used for this study. The test conditions were: air inlet state was maintained at 27°C of dry bulb temp and 50% RH; average condensing and evaporation pressures were maintained at 15.5 & 1.96 kg/cm2 G, respectively with 5°C evaporator superheat and 5°C condenser subcooling; and air flow rate was varied from 120 to 480 m3/hr. The result shows that there is a significant impact of the tank position on the evaporator heat transfer rate and pressure drop.
Technical Paper

Predicting the Bumper System Response of Engineering Thermoplastic Energy Absorbers with Steel Beams

2002-03-04
2002-01-1228
An efficient energy absorber (EA) will absorb impact energy through a combination of elastic and plastic deformation. However, the EA is typically coupled with a steel reinforcing beam, which can also elastically and plastically deform during an impact event. In order to design and optimize an EA/Beam system that will meet the specified vehicle impact requirements, the response of the entire assembly must be accurately predicted. This paper will describe a finite element procedure and material model that can be used to predict the impact response of a bumper system composed of an injection molded thermoplastic energy absorber attached to a steel beam. The first step in the process was to identify the critical material, geometric, and boundary condition parameters involved in the EA and Beam individually. Next, the two models were combined to create the system model. Actual test results for 8km/hr.
Technical Paper

Managing Thermal Growth for Large Class “A” Polymer Body Panel Closure Systems

2002-01-04
2002-01-0276
The history behind Polymer Class “A” Body Panels for automotive applications is very interesting. The driving factors behind these applications have not changed significantly over the past sixty years. Foremost among these factors is the need for corrosion and dent resistance. Beginning with Saturn in 1990, interest in polymer body panels grew and continues to grow up to the present day, with every new global application. Today, consumers and economic factors drive the industry trend towards plastic body panels. These include increased customization and fuel economy on the consumer side. Economic factors such as lower unit build quantities, reduced vehicle mass, investment cost, and tooling lead times influence material choice for industry. The highest possible performance, and fuel economy, at the lowest price have always been a goal.
X