Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Design and Development of a Thor-Based Small Female Crash Test Dummy

2003-10-27
2003-22-0024
This paper describes the design and development of a small female crash test dummy, results of biofidelity tests, and preliminary results from full-scale, 3-point belt and airbag type sled tests. The small female THOR was designed using the anthropometric data developed by Robbins for the 5th percentile female and biomechanical requirements derived from scaling the responses of the 50th percentile male. While many of the mechanical components of the NHTSA THOR 50th percentile male dummy were scaled according to the appropriate anthropometric data, a number of improved design features have been introduced in the new female THOR. These include; improved neck design, new designs for the head and neck skins: and new designs for the upper and lower abdomen. The lower leg, ankle and foot, known as THOR-FLx, were developed in an earlier effort and have been included as a standard part of the new female dummy.
Technical Paper

On the Development of the SIMon Finite Element Head Model

2003-10-27
2003-22-0007
The SIMon (Simulated Injury Monitor) software package is being developed to advance the interpretation of injury mechanisms based on kinematic and kinetic data measured in the advanced anthropomorphic test dummy (AATD) and applying the measured dummy response to the human mathematical models imbedded in SIMon. The human finite element head model (FEHM) within the SIMon environment is presented in this paper. Three-dimensional head kinematic data in the form of either a nine accelerometer array or three linear CG head accelerations combined with three angular velocities serves as an input to the model. Three injury metrics are calculated: Cumulative strain damage measure (CSDM) – a correlate for diffuse axonal injury (DAI); Dilatational damage measure (DDM) – to estimate the potential for contusions; and Relative motion damage measure (RMDM) – a correlate for acute subdural hematoma (ASDH).
Technical Paper

Development of THOR-FLx: A Biofidelic Lower Extremity for Use with 5th Percentile Female Crash Test Dummies

2002-11-11
2002-22-0014
A new lower leg/ankle/foot system has been designed and fabricated to assess the potential for lower limb injuries to small females in the automotive crash environment. The new lower extremity can be retrofitted at present to the distal femur of the 5th percentile female Hybrid III dummy. Future plans are for integration of this design into the 5th percentile female THOR dummy now under development. The anthropometry of the lower leg and foot is based mainly on data developed by Robbins for the 5th percentile female, while the biomechanical response requirements are based upon scaling of 50th percentile male THOR-Lx responses. The design consists of the knee, tibia, ankle joints, foot, a representation of the Achilles tendon, and associated flesh/skins. The new lower extremity, known as THOR-FLx, is designed to be biofidelic under dynamic axial loading of the tibia, static and dynamic dorsiflexion, static plantarflexion and inversion/eversion.
Technical Paper

Development and Design of Thor-Lx: The Thor Lower Extremity

1999-10-10
99SC09
A new lower extremity has been developed to be used with Thor, the NHTSA Advanced Frontal Dummy. The new lower extremity, known as Thor-Lx, consists of the femur, tibia, ankle joints, foot, a representation of the Achilles' tendon and the associated flash/skins, it has been designed to improve biomechanical response under axial loading of the femur during knee impacts, axial loading of the tibia, static and dynamic dorsiflexion, static plantarflexion and inversion/aversion. Instrumentation includes a standard Hybrid ill femur load cell, accelerometers, load cells, and rotary potentiometers to capture relevant kinematic and dynamic information from the foot and tibia. The design also allows the Tnor-Lx to be attached to the Hybrid III, either at the hip, or at the knee.
Technical Paper

Safety of Side Facing Seats in General Aviation Aircraft

1995-05-01
951164
The motion of occupants seated in a typical side facing seat in a general transport aircraft was analyzed using the DYNAMAN simulation program. This paper presents the results of the first phase of the study, where simulations were performed to validate the computer model against a set of tests performed at CAMI using Hybrid II and Hybrid III dummies. There was usually good agreement between test and simulation of the pelvic and chest accelerations, and right side lap belt and shoulder belt loads. The head accelerations tended to be underestimated and the neck and pelvic loads and moments overestimated in the simulations. The only injury parameter which consistently exceeded the tolerance value was the lateral moment at the head-neck junction.
X