Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Adjoint-Driven Aerodynamic Shape Optimization Based on a Combination of Steady State and Transient Flow Solutions

2016-04-05
2016-01-1599
Aerodynamic vehicle design improvements require flow simulation driven iterative shape changes. The 3-D flow field simulations (CFD analysis) are not explicitly descriptive in providing the direction for aerodynamic shape changes (reducing drag force or increasing the down-force). In recent times, aerodynamic shape optimization using the adjoint method has been gaining more attention in the automotive industry. The traditional DOE (Design of Experiment) optimization method based on the shape parameters requires a large number of CFD flow simulations for obtaining design sensitivities of these shape parameters. The large number of CFD flow simulations can be significantly reduced if the adjoint method is applied. The main purpose of the present study is to demonstrate and validate the adjoint method for vehicle aerodynamic shape improvements.
Technical Paper

Application of CAEBAT Full Field Approach for a Liquid-Cooled Automotive Battery Pack

2016-04-05
2016-01-1217
The Computer-Aided Engineering of Automotive Batteries (CAEBAT) Phase 1 project is a U.S. Department of Energy-funded, multi-year project which is aimed at developing a complete CAE tool set for the automotive battery pack design. This paper reports the application of the full field approach of the CAEBAT which is developed by the General Motors-led industry team, for a 24-cell liquid-cooled prototype battery pack. It also summarizes the verification of the approach by comparing the simulation results with the measurement data. The simulation results using the Full Field Approach are found to have a very good agreement with the measurement data.
X