Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Method of Improving Slam Durability Fatigue of Vehicle Liftgate Subsystem for Fast-Track Vehicle Development Cycle

2024-01-16
2024-26-0302
With reference to present literature, most OEMs are working on reducing product development time by around ~20%, through seamless integration of digital ecosystem and focusing on dynamic customer needs. The Systems Engineering approach focuses on functions & systems rather than components. In this approach, designers (Computer Aided Design) / analysts (Computer Aided Engineering) need to understand program requirements early to enable seamless integration. This approach also reduces the number of iterative loops between cross functions thereby reducing the development cycle time. In this paper, we have attempted to tackle a common challenge faced by Closures (Liftgate) engineering: meeting slam durability fatigue life while replicating customer normal and abusive closing behavior.
Technical Paper

A Three-Layer Model for Ice Crystal Icing in Aircraft Engines

2023-06-15
2023-01-1481
This paper presents the current state of a three-layer surface icing model for ice crystal icing risk assessment in aircraft engines, being developed jointly by Ansys and Honeywell to account for possible heat transfer from inside an engine into the flow path where ice accretion occurs. The bottom layer of the proposed model represents a thin metal sheet as a substrate surface to conductively transfer heat from an engine-internal reservoir to the ice layer. The middle layer is accretion ice with a porous structure able to hold a certain amount of liquid water. A shallow water film layer on the top receives impinged ice crystals. A mass and energy balance calculation for the film determines ice accretion rate. Water wicking and recovery is introduced to transfer liquid water between film layer and porous ice accretion layer.
Technical Paper

Volume and Pressure Considerations in Human Body Modeling

2020-03-31
2019-22-0020
The initial presence and dynamic formation of internal voids in human body models have been subjects of discussion within the human body modeling community. The relevant physics of the human body are described and the importance of capturing this physics for modeling of internal organ interactions is demonstrated. Basic modeling concepts are discussed along with a proposal of simulation setups designed to verify model behavior in terms of volume and pressure between internal organs.
Journal Article

High Altitude Ice Crystal Detection with Aircraft X-band Weather Radar

2019-06-10
2019-01-2026
During participation on EU FP7 HAIC project, Honeywell has developed methodology to detect High Altitude Ice Crystals with the Honeywell IntuVue® RDR-4000 X-band Weather Radar. The algorithm utilizes 3D weather buffer of RDR-4000 weather radar and is based on machine learning. The modified RDR-4000 Weather Radar was successfully flight tested during 2016 HAIC Validation Campaign; the technology was granted Technology Readiness Level 6 by HAIC consortium. After the end of HAIC project, the method was also evaluated with respect to newly set preliminary industry standard performance requirements1. This paper discuses technology design rationale, high level technology architecture, technology performance, and challenges associated with performance evaluation.
Technical Paper

Making a Regional Belt Drive Rack Electric Power Steering System Global

2017-11-07
2017-36-0188
An actual trend in the automotive industry is to have global products in order to have economy of scale. This paper presents how a Belt Drive Rack EPS developed for the North American market had to be modified in order to be assembled in a Vehicle sold all around the world. Main technical challenges for achieving that goal were generated from different Architectures, whether electrical or mechanical, used in each vehicle, Packaging issues and Regional Requirements. Main features affected are Database Configuration, Electromagnetic Compatibility, Smooth Road Shake mitigation and Pull Compensation.
Technical Paper

Trivial Principal Component Analysis (TPCA): An Improved Modeling Approach

2017-03-28
2017-01-0220
Trivial Principal Component method (TPC) was developed recently to model a system based on measured data. It is a statistical method that utilizes Eigen-pairs of covariance matrix obtained from the measured data. It determines linear coefficients of a model by using the trivial eigenvector corresponding to the least eigenvalue. In general, linear modeling accuracy depends on the strength of nonlinearity and interaction terms as well as measurement error. In this paper, the TPC method is extended to analyze residual (error) vector to identify significant higher order and interaction terms that contribute to the modeling error. Subsequently, these additional terms are included for constructing a robust system model. Also, an iterative TPC analysis is proposed for the first time to correct the model gradually till the least eigenvalue becomes minimum.
Technical Paper

Automated Generation of Service Procedure Content from IVHM Fault Model

2017-03-28
2017-01-1690
An IVHM Reference Model contains relations between Symptoms, Failure Modes, Troubleshooting Tests and Corrective Actions. Since it also encodes the specific vehicle variants for which these items are applicable, it can be used to create vehicle variant specific fault isolation plans for a pattern of symptoms on a specific vehicle. This paper will discuss the methodology through which a diagnostic reasoner can use a fault model, vehicle reported symptoms and vehicle configuration data to produce a vehicle fault specific troubleshooting plan. This paper will also discuss how a wide variety of Diagnostic Work Plans can be automatically created for a platform and its variants and how these plans can be adapted by Service Engineering authors to further improve their content.
Technical Paper

A Study of Hybrid III 5th Percentile Female ATD Chest Accelerometers to Assess Sternum Compression Rate in Chest on Module Driver Out-of-Position Evaluations

2017-03-28
2017-01-1431
Driver out-of-position (OOP) tests were developed to evaluate the risk of inflation induced injury when the occupant is close to the airbag module during deployment. The Hybrid III 5th percentile female Anthropomorphic Test Device (ATD) measures both sternum displacement and chest acceleration through a potentiometer and accelerometers, which can be used to calculate sternum compression rate. This paper documents a study evaluating the chest accelerometers to assess punch-out loading of the chest during this test configuration. The study included ATD mechanical loading and instrumentation review. Finite element analysis was conducted using a Hybrid III - 5th percentile female ATD correlated to testing. The correlated restraint model was utilized with a Hybrid III - 50th percentile male ATD. A 50th percentile male Global Human Body Model (HBM) was then applied for enhanced anatomical review.
Technical Paper

Experimental Investigation of Fuel Film Characteristics of Ethanol Impinging Spray at Ultra-Low Temperature

2017-03-28
2017-01-0851
Increasing the injection pressure in DISI engine is an efficient way to obtain finer droplets but it will also potentially cause spray impingement on the cylinder wall and piston. Consequently, the fuel film sticking on the wall can dramatically increase the soot emission of the engine especially in a cold start condition. On the other hand, ethanol is widely used as an alternative fuel in DI engine due to its sustainable nature and high octane number. In this study, the fuel film characteristics of single-plume ethanol impinging spray was investigated. The experiments were performed under ultra-low fuel/plate temperature to simulate the cold start condition in cold areas. A low temperature thermostatic bath combined with specially designed heat exchangers were used to achieve ultra-low temperature for both the impinging plate and the fuel. Laser induced fluorescence (LIF) technique was employed to measure the thickness of fuel film deposited on the impinging plate.
Journal Article

Analysis of Warranty Data to Identify Improvements to Vehicle Reliability and Service Information

2017-03-28
2017-01-1687
It is common for an automotive OEM to produce a wide variety of automotive models related to a common platform. As such, it is important to analyze how these variants perform with relation to reliability and warranty claims relative to each other. This paper illustrates techniques that have been applied to use warranty claim information to assess the relative reliability and incident rates for DTC occurrences, component removals, and co-occurrences with other DTCs for a family of Vehicle applications. These results are then used to identify common root cause failure modes and DTCs on specific vehicle applications that perform worse than fleet averages, and components with much lower reliability than components in similar applications. The paper concludes with an assessment of how warranty information can be used to identify precursors to future failures, identify material requirements by region and to identify product improvements in either hardware, software or service procedures:
Journal Article

Integration of Component Design Data for Automotive Turbocharger with Vehicle Fault Model Using JA6268 Methodology

2017-03-28
2017-01-1623
Suppliers and integrators are working with SAE’s HM-1 standards team to develop a mechanism to allow “Health Ready Components” to be integrated into larger systems to enable broader IVHM functionality (reference SAE JA6268). This paper will discuss how the design data provided by the supplier of a component/subsystem can be integrated into a vehicle reference model with emphasis on how each aspect of the model is transmitted to minimize ambiguity. The intent is to enhance support for the analytics, diagnostics and prognostics for the embedded component. In addition, we describe functionality being delegated to other system components and that provided by the supplier via syndicated web services. As a specific example, the paper will describe the JA6268 data submittal for a typical automotive turbocharger and other engine air system components to clarify the data modeling and integration processes.
Journal Article

Health Ready Components-Unlocking the Potential of IVHM

2016-04-05
2016-01-0075
Health Ready Components are essential to unlocking the potential of Integrated Vehicle Health Management (IVHM) as it relates to real-time diagnosis and prognosis in order to achieve lower maintenance costs, greater asset availability, reliability and safety. IVHM results in reduced maintenance costs by providing more accurate fault isolation and repair guidance. IVHM results in greater asset availability, reliability and safety by recommending preventative maintenance and by identifying anomalous behavior indicative of degraded functionality prior to detection of the fault by other detection mechanisms. The cost, complexity and effectiveness of the IVHM system design, deployment and support depend, to a great extent, on the degree to which components and subsystems provide the run-time data needed by IVHM and the design time semantic data to allow IVHM to interpret those messages.
Journal Article

Development of the Combustion System for General Motors' High-Efficiency Range Extender Ecotec Small Gas Engine

2015-04-14
2015-01-1272
General Motors has developed an all-new Ecotec 1.5 L range extender engine for use in the 2016 next generation Voltec propulsion system. This engine is part of a new Ecotec family of small displacement gasoline engines introduced in the 2015 model year. Major enhancements over the range extender engine in the current generation Voltec propulsion system include the adoption of direct injection (DI), cooled external exhaust gas recirculation (EGR), and a high 12.5:1 geometric compression ratio (CR). Additional enhancements include the adoption of high-authority phasers on both the intake and exhaust camshafts, and an integrated exhaust manifold (IEM). The combination of DI with cooled EGR has enabled significant thermal efficiency gains over the 1.4 L range extender engine in the current generation Voltec propulsion system at high engine loads.
Technical Paper

Dry Dual Clutch Transmission (DCT) Thermal Model

2015-04-14
2015-01-1144
Dual Clutch Transmissions (DCT) for passenger cars are being developed by OEMs and suppliers. The driving force is the improvement in fuel economy available from manual transmissions together with the comfort of automatic transmissions. A dry clutch system (dDCT) is currently the subject of research, development, and production implementation. One of the key issues in the development of a dDCT is clutch durability. In dry clutches with current linings, above a critical temperature, the friction system starts to suffer permanent damage. In addition, the clutch friction characteristics are a function of the clutch interface temperature. Because a reliable, low-cost temperature sensor is not available for this application, the clutch control engineers rely on a good thermal model to estimate the temperature of the clutches. A thermal model was developed for dry dual clutch transmissions to predict operating temperature of both pressure and center plates during all maneuvers.
Journal Article

Performance Characterization of a Triple Input Clutch, Layshaft Automatic Transmission Using Energy Analysis

2013-12-15
2013-01-9042
This paper details the design and operating attributes of a triple input clutch, layshaft automatic transmission (TCT) with a torque converter in a rear wheel drive passenger vehicle. The objectives of the TCT design are to reduce fuel consumption while increasing acceleration performance through the design of the gearing arrangement, shift actuation system and selection of gear ratios and progression. A systematic comparison of an 8-speed TCT design is made against a hypothetical 8-speed planetary automatic transmission (AT) with torque converter using an energy analysis model based upon empirical data and first principles of vehicle-powertrain systems. It was found that the 8-speed TCT design has the potential to provide an approximate 3% reduction in fuel consumption, a 3% decrease in 0-100 kph time and 30% reduction in energy loss relative to a comparable 8-speed planetary AT with an idealized logarithmic ratio progression.
Journal Article

Optimal Sensor Configuration and Fault-Tolerant Estimation of Vehicle States

2013-04-08
2013-01-0175
This paper discusses observability of the vehicle states using different sensor configurations as well as fault-tolerant estimation of these states. The optimality of the sensor configurations is assessed through different observability measures and by using a 3-DOF linear vehicle model that incorporates yaw, roll and lateral motions of the vehicle. The most optimal sensor configuration is adopted and an observer is designed to estimate the states of the vehicle handling dynamics. Robustness of the observer against sensor failure is investigated. A fault-tolerant adaptive estimation algorithm is developed to mitigate any possible faults arising from the sensor failures. Effectiveness of the proposed fault-tolerant estimation scheme is demonstrated through numerical analysis and CarSim simulation.
Journal Article

Development of a Standard Spin Loss Test Procedure for FWD-Based Power Transfer Units

2013-04-08
2013-01-0361
As vehicle fuel economy continues to grow in importance, the ability to accurately measure the level of efficiency on all driveline components is required. A standardized test procedure enables manufacturers and suppliers to measure component losses consistently and provides data to make comparisons. In addition, the procedure offers a reliable process to assess enablers for efficiency improvements. Previous published studies have outlined the development of a comprehensive test procedure to measure transfer case speed-dependent parasitic losses at key speed, load, and environmental conditions. This paper will take the same basic approach for the Power Transfer Units (PTUs) used on Front Wheel Drive (FWD) based All Wheel Drive (AWD) vehicles. Factors included in the assessment include single and multi-stage PTUs, fluid levels, break-in process, and temperature effects.
Journal Article

Design Verification of Automotive Controller Models

2013-04-08
2013-01-0428
Model-Based Development processes in the automotive industry typically use high-level modeling languages to build the reference models of embedded controllers. One can use formal verification tools to exhaustively verify these design models against their requirements, ensuring high quality models and a reduction in the cost and effort of functional testing. However, there is a gap, in terms of processes and tools, between the informal requirements and the formal specifications required by the verification tools. In this paper, we propose an approach that tries to bridge this gap by (i) identifying the verifiable requirements through a categorization process, (ii) providing a set of templates to easily express the verifiable requirements, and (iii) generating monitors that can be used as specifications in design verification tools. We demonstrate our approach using the Simulink Design Verifier tool for design verification of Simulink/Stateflow models.
Journal Article

Optimal Torque Control for an Electric-Drive Vehicle with In-Wheel Motors: Implementation and Experiments

2013-04-08
2013-01-0674
This paper presents the implementation of an off-line optimized torque vectoring controller on an electric-drive vehicle with four in-wheel motors for driver assistance and handling performance enhancement. The controller takes vehicle longitudinal, lateral, and yaw acceleration signals as feedback using the concept of state-derivative feedback control. The objective of the controller is to optimally control the vehicle motion according to the driver commands. Reference signals are first calculated using a driver command interpreter to accurately interpret what the driver intends for the vehicle motion. The controller then adjusts the braking/throttle outputs based on discrepancy between the vehicle response and the interpreter command.
Journal Article

A Computational Method for Efficient Hub Offset Comparisons with Deflected-Disc Dampers

2013-04-08
2013-01-1357
With deflected-disc dampers, digressive force-velocity shapes are achieved via the combined effects of disc stack stiffness and hub-offset. The degree of digressiveness can be adjusted to alter vehicle performance by changing the proportion of these parameters. Optimizing this relationship can yield substantial vehicle performance improvements, but the time consuming iterative process of developing a new disc stack for each hub-offset discourages experimentation. To enable more efficient digressiveness comparisons, a regression-based computational method has been developed which converts disc stack stiffness from one hub-offset to other offsets directly, without iteration. Once an initial disc stack for one offset has been tuned by traditional methods, stacks for other offsets can be calculated that maintain overall damper control.
X