Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermal-Mechanical Durability of DOC and DPF After-treatment System for Light Heavy Pickup Truck Application

2009-11-02
2009-01-2707
The US Environmental Protection Agency (EPA)’s heavy duty diesel emission standard was tightened beginning from 2007 with the introduction of ultra-low-sulfur diesel fuel. Most heavy duty diesel applications were required to equip Particulate Matter (PM) after-treatment systems to meet the new tighter, emission standard. Systems utilizing Diesel Oxidation Catalyst (DOC) and Catalyzed-Diesel Particulate Filter (DPF) are a mainstream of modern diesel PM after-treatment systems. To ensure appropriate performance of the system, periodic cleaning of the PM trapped in DPF by its oxidation (a process called “regeneration”) is necessary. As a result, of this regeneration, DOC’s and DPF’s can be exposed to hundreds of thermal cycles during their lifetime. Therefore, to understand the thermo-mechanical performance of the DOC and DPF is an essential issue to evaluate the durability of the system.
Technical Paper

Application of Hydraulic Body Mounts to Reduce the Freeway Hop Shake of Pickup Trucks

2009-05-19
2009-01-2126
When pickup trucks are driven on concrete paved freeways, freeway hop shake is a major complaint. Freeway hop shake occurs when the vehicle passes over the concrete joints of the freeway which impose in-phase harmonic road inputs. These road inputs excite vehicle modes that degrade ride comfort. The worst shake level occurs when the vehicle speed is such that the road input excites the vehicle 1st bending mode and/or the rear wheel hop mode. The hop and bending mode are very close in frequency. This phenomenon is called freeway hop shake. Automotive manufacturers are searching for ways to mitigate freeway hop shake. There are several ways to reduce the shake amplitude. This paper documents a new approach using hydraulic body mounts to reduce the shake. A full vehicle analytical model was used to determine the root cause of the freeway hop shake.
Technical Paper

Opportunities and Challenges for Blended 2-Way SCR/DPF Aftertreatment Technologies

2009-04-20
2009-01-0274
Diesel engines offer better fuel economy compared to their gasoline counterpart, but simultaneous control of NOx and particulates is very challenging. The blended 2-way SCR/DPF is recently emerging as a compact and cost-effective technology to reduce NOx and particulates from diesel exhaust using a single aftertreatment device. By coating SCR catalysts on and inside the walls of the conventional wall-flow filter, the 2-way SCR/DPF eliminates the volume and mass of the conventional SCR device. Compared with the conventional diesel aftertreatment system with a SCR and a DPF, the 2-way SCR/DPF technology offers the potential of significant cost saving and packaging flexibility. In this study, an engine dynamometer test cell was set up to repeatedly load and regenerate the SCR/DPF devices to mimic catalyst aging experienced during periodic high-temperature soot regenerations in the real world.
Technical Paper

Prediction of Brake System Performance during Race Track/High Energy Driving Conditions with Integrated Vehicle Dynamics and Neural-Network Subsystem Models

2009-04-20
2009-01-0860
In racetrack conditions, brake systems are subjected to extreme energy loads and energy load distributions. This can lead to very high friction surface temperatures, especially on the brake corner that operates, for a given track, with the most available traction and the highest energy loading. Individual brake corners can be stressed to the point of extreme fade and lining wear, and the resultant degradation in brake corner performance can affect the performance of the entire brake system, causing significant changes in pedal feel, brake balance, and brake lining life. It is therefore important in high performance brake system design to ensure favorable operating conditions for the selected brake corner components under the full range of conditions that the intended vehicle application will place them under. To address this task in an early design stage, it is helpful to use brake system modeling tools to analyze system performance.
Journal Article

Evaluation of Cu-Based SCR/DPF Technology for Diesel Exhaust Emission Control

2008-04-14
2008-01-0072
Recently, a new technology, termed 2-way SCR/DPF by the authors, has been developed by several catalyst suppliers for diesel exhaust emission control. Unlike a conventional emission control system consisting of an SCR catalyst followed by a catalyzed DPF, a wall-flow filter is coated with SCR catalysts for controlling both NOx and PM emissions in a single catalytic converter, thus reducing the overall system volume and cost. In this work, the potential and limitations of the Cu/Zeolite-based SCR/DPF technology for meeting future emission standards were evaluated on a pick-up truck equipped with a prototype light-duty diesel engine.
Technical Paper

Stability Analysis of Solid Axle, Torque Arm Suspension Vehicles under Heavy Acceleration and Braking Events

2008-04-14
2008-01-1144
Power-hop is a self-excited and potential locally unstable torsional vibration of a vehicle's driveline, caused by stick and slip of the tire. It is especially prevalent in high-powered cars and trucks, under heavy acceleration. Torque arms have been used to reduce power-hop for many solid axle suspension vehicles, mostly trucks and old rear wheel drive sports cars. It has long been known that the shortest torque arm easily reduces power-hop, but will increase hop under braking (braking-hop). The fundamental mechanism of torque arm effects on solid axle suspension vehicles, however, has not yet been fully explained. This study explains the stability of solid axle, torque arm suspension vehicles under heavy acceleration and braking. Analytical techniques utilize conventional linear analysis and a non-linear coupling force in a 4 degree of freedom dynamic model.
Technical Paper

Dynamic Moving Mesh CFD Study of Semi-truck Passing a Stationary Vehicle with Hood Open

2007-04-16
2007-01-0111
This paper examines the aerodynamic forces on the open hood of a stationary vehicle when another large vehicle, such as an 18-wheel semi-truck, passes by at high speed. The problem of semi-truck passing a parked car with hood open is solved as a transient two-vehicle aerodynamics problem with a Dynamic Moving Mesh (DMM) capability in commercial CFD software package FLUENT. To assess the computational feasibility, a simplified compact car / semi-truck geometry and CFD meshes are used in the first trial example. At 70 mph semi-truck speed, the CFD results indicate a peak aerodynamic force level of 20N to 30N on the hood of the car, and the direction of the net forces and moments on the hood change multiple times during the passing event.
Technical Paper

Prediction of Brake Lining Life Using an Energy-Based CAE Approach

2007-04-16
2007-01-1019
Due to competitive pressures and the need to rapidly develop new products for the automotive marketplace, the automotive industry has to rapidly develop and validate automotive subsystems and components. While many CAE tools are employed to decrease the time needed for a number of brake engineering tasks such as stress analysis, brake system sizing, thermo-fluid analysis, and structural dynamics, brake lining wear and the associated concept of “lining life” are still predominantly developed and validated through resource intensive public road vehicle testing. The goal of this paper is to introduce and detail an energy-based, lumped-parameter CAE approach to predict brake lining life in passenger cars and light trucks.
Technical Paper

Future Truck Steering Effort Optimization

2007-04-16
2007-01-1155
In an endeavor to improve upon historically subjective and hardware-based steering tuning development, a team was formed to find an optimal and objective solution using Design For Six Sigma (DFSS). The goal was to determine the best valve assembly design within a hydraulic power-steering assist system to yield improved steering effort and feel robustness for all vehicle models in a future truck program. The methodology utilized was not only multifaceted with several Design of Experiments (DOEs), but also took advantage of a CAE-based approach leveraging modeling capabilities in ADAMS for simulating full-vehicle, On-Center Handling behavior. The team investigated thirteen control factors to determine which minimized a realistic, compounded noise strategy while also considering the ideal steering effort function (SEF) desired by the customer. In the end, it was found that response-dependent variability dominated the physics of our valve assembly design concept.
Technical Paper

Global Research and Development: GM Case Study India

2006-10-16
2006-21-0086
Global R&D is in its infant stages. Senior executives and their organizations need to develop deeper understanding of the opportunities and challenges of off-shoring R&D. While global pressure will continue to mount to deliver more value at ever lower cost, the labor cost arbitrage break in countries such as China or India will not last forever. The fundamental challenge is to use the current low-cost advantage to build rapidly a sustainable technology, product and service advantage. This requires the development of a balanced local growth strategy that is well adapted to the regional strengths while ensuring a seamless global integration of people, organizations, and processes. This paper focuses on the build-up of GM's R&D activities in India with an emphasis on research in one of the key thrust areas in GM R&D - Automotive Electronics, Controls, and Software. Lessons learned apply also to development.
Technical Paper

Development of a Steer-by-Wire System for the GM Sequel

2006-04-03
2006-01-1173
Steer-by-wire systems (SBW) offer the potential to enhance steering functionality by enabling features such as automatic lane keeping, park assist, variable steer ratio, and advanced vehicle dynamics control. The lack of a steering intermediate shaft significantly enhances vehicle architectural flexibility. These potential benefits led GM to include steer-by-wire technology in its next generation fuel cell demonstration vehicle, called “Sequel.” The Sequel's steer-by-wire system consists of front and rear electromechanical actuators, a torque feedback emulator for the steering wheel, and a distributed electronic control system. Redundancy of sensors, actuators, controllers, and power allows the system to be fault-tolerant. Control is provided by multiple ECU's that are linked by a fault-tolerant communication system called FlexRay. In this paper, we describe the objectives for fault tolerance and performance that were established for the Sequel.
Technical Paper

Optimal Mount Selection with Scattered and Bundled Stiffness Rates

2006-04-03
2006-01-0736
The optimal selection of vehicle body and powertrain mounts from “mount libraries” is one of the major undertakings to achieve optimal vehicle dynamics and N&V performance through the reuse of existing mount designs. The great challenges of the process are due to the facts that conventional optimization procedures, either through simulation or DOE, can not be used directly because the stiffness rates of the mounts are scattered and bundled. Sorting out the best through hardware tests is generally unrealistic simply due to the huge number of mount combinations. This paper presents a new approach to the optimal mount selection, and demonstrates through applications that it is efficient and reliable. This approach characterizes a mount by its effective stiffness rate and evaluates its deviation from an associated target. Continuous dummy variables are used to determine the selection targets through conventional processes for performance optimization.
Technical Paper

Fatigue Strength Effect of Thread Forming Process in Cast Aluminum

2006-04-03
2006-01-0780
Two thread forming processes, rolling and cutting, were studied for their effects on fatigue in cast aluminum 319-T7. Material was excised from cylinder blocks and tested in rotating-bending fatigue in the form of unnotched and notched specimens. The notched specimens were prepared by either rolling or cutting to replicate threads in production-intent parts. Cut threads exhibited conventional notch behavior for notch sensitive materials. In contrast, plastic deformation induced by rolling created residual compressive stresses in the notch root and significantly improved fatigue strength to the point that most of the rolled specimens broke outside the notch. Fractographic and metallographic investigation showed that cracks at the root of rolled notches were deflected upon initiation. This lengthened their incubation period, which effectively increased fatigue resistance.
Technical Paper

Further Assessment of Closed-Wall Wind Tunnel Blockage Using CFD

2005-04-11
2005-01-0868
The computational fluid dynamics (CFD) based wind tunnel blockage correction method proposed in [1] was extended in the present study to production vehicles with detailed underhood and underbody components, fascia and grills. Three different types of vehicles (sedan, SUV, and pickup truck) were considered in the study. While the previous CFD based wind tunnel blockage correction method was for vehicle aerodynamic drag, the blockage effect on vehicle cooling airflow is also included in the present study, and a CFD based blockage correction method for vehicle cooling airflow is proposed. Comparisons were made between the blockage effects for the production vehicles and the blockage effects for the generic vehicles.
Technical Paper

Development of an MDB Concept for Crash Compatibility

2005-04-11
2005-01-1374
The essential concepts for developing a moving deformable barrier that may serve as a vehicle surrogate in assessing vehicle compatibility are described in this paper. Although moving deformable barriers have been used for assessing other safety criteria, their purpose in those cases is to reproduce a limited set of responses in the struck vehicle. An MDB for vehicle compatibility however, needs to be able to reproduce the responses of both the vehicles. The present study describes the concept of developing such barriers by generating ‘response corridors’ for the significant variables by nonlinear finite element simulations and then selecting design parameters such that the MDB response is within this corridor. It is observed that the response of the equivalent MDB representing a light truck vehicle is reproducible when response corridors are utilized.
Technical Paper

The Supercharged Northstar DOHC 4.4L V8 Engine for Cadillac

2005-04-11
2005-01-1854
A new high output supercharged Northstar DOHC 4.4L V8 engine has been developed for new “V” series Cadillac performance models. The new engine combines the highest power rating of any production Cadillac engine to date with operating refinement uncommon at this power level. The new engine incorporates a high capacity airflow system including a unique GM Powertrain (GMPT) patented supercharger. The design integrates the intake manifold and supercharger (SC) into a supercharger module (SCM) supplied with throttle body (TB) and intercoolers (IC). The new engine architecture is based on the naturally aspirated (NA) rear wheel drive (RWD) engine released in 2004, but has been specifically designed and upgraded from the NA version for the greater structural and thermal loads that result from supercharging.
Technical Paper

Design of the Milford Road Course

2005-04-11
2005-01-0385
The Milford Road Course is a new 2.9 mi (4.6 km), 20 turn, configurable closed course with 135 ft (41 m) of elevation change, constructed at the General Motors Proving Ground in Milford, MI, USA. This facility provides a convenient and safe venue for engineers to evaluate vehicle limit performance over extensive combinations of vertical, lateral and longitudinal acceleration at a wide range of speeds. This paper discusses the vehicle dynamics aspects of the facility design, simulation and construction.
Technical Paper

CFD Simulations for Flow Over Pickup Trucks

2005-04-11
2005-01-0547
Computational fluid dynamics (CFD) was used to simulate the flow field over a pickup truck. The simulation was based on a steady state formulation and the focus of the simulation was to assess the capabilities of the currently used CFD tools for vehicle aerodynamic development for pickup trucks. Detailed comparisons were made between the CFD simulations and the existing experiments for a generic pickup truck. It was found that the flow structures obtained from the CFD calculations are very similar to the corresponding measured mean flows. Furthermore, the surface pressure distributions are captured reasonably well by the CFD analysis. Comparison for aerodynamic drags was carried out for both the generic pickup truck and a production pickup truck. Both the simulations and the measurements show the same trends for the drag as the vehicle geometry changes, This suggests that the steady state CFD simulation can be used to aid the aerodynamic development of pickup trucks.
Technical Paper

Assessment of Closed-Wall Wind Tunnel Blockage using CFD

2004-03-08
2004-01-0672
Effects of the wind tunnel blockage in a closed-wall wind tunnel were investigated using computational fluid dynamics (CFD). Flow over three generic vehicle models representing a passenger sedan, a sports utility vehicle (SUV), and a pickup truck was solved. The models were placed in a baseline virtual wind tunnel as well as four additional virtual wind tunnels, each with different size cross-sections, providing different levels of wind tunnel blockage. For each vehicle model, the CFD analysis produced an aerodynamic drag coefficient for the vehicle at the blockage free condition as well as the blockage effect increment for the baseline wind tunnel. A CFD based blockage correction method is proposed. Comparisons of this method to some existing blockage correction methods for closed-wall wind tunnel are also presented.
Technical Paper

Obtaining the Coupled Response of Structures from their Mass Loaded Forced Response

2004-03-08
2004-01-0759
This paper outlines a newly developed method for predicting the coupled response of structures from their uncoupled forced responses without having to know the forces acting on such structures. It involves computing the forced response of originally uncoupled structures with several mass loadings at a potential coupling point. The response data obtained from such computations is then used to predict the coupled response. The theory for discrete linear systems is outlined in the paper and a numerical example is given to demonstrate the validity, advantages and limitations of the method. The method is primarily devised to obtain coupled response of linear dynamic systems from independent and uncoupled analytical simulations. Its application significantly decreases computation time by reducing the simulation model size and is excellent for “what if” scenarios where a large number of simulations would otherwise be necessary.
X