Refine Your Search

Topic

Author

Search Results

Journal Article

Fast and Efficient Detection of Shading of the Objects

2015-04-14
2015-01-0371
The human thermal comfort, which has been a subject of extensive research, is a principal objective of the automotive climate control system. Applying the results of research studies to the practical problems require quantitative information of the thermal environment in the passenger compartment of a vehicle. The exposure to solar radiation is known to alter the thermal environment in the passenger compartment. A photovoltaic-cell based sensor is commonly used in the automotive climate control system to measure the solar radiation exposure of the passenger compartment of a vehicle. The erroneous information from a sensor however can cause thermal discomfort to the occupants. The erroneous measurement can be due to physical or environmental parameters. Shading of a solar sensor due to the opaque vehicle body elements is one such environmental parameter that is known to give incorrect measurement.
Technical Paper

Least-Enthalpy Based Control of Cabin Air Recirculation

2015-04-14
2015-01-0372
The vehicle air-conditioning system has significant impact on fuel economy and range of electric vehicles. Improving the fuel economy of vehicles therefore demand for energy efficient climate control systems. Also the emissions regulations motivate the reduced use of fuel for vehicle's cabin climate control. Solar heat gain of the passenger compartment by greenhouse effect is generally treated as the peak thermal load of the climate control system. Although the use of advanced glazing is considered first to reduce solar heat gain other means such as ventilation of parked car and recirculation of cabin air also have impetus for reducing the climate control loads.
Technical Paper

Cabin Air Humidity Model and its Application

2015-04-14
2015-01-0369
In addition to the thermal comfort of the vehicle occupants, their safety by ensuring adequate visibility is an objective of the automotive climate control system. An integrated dew point and glass temperature sensor is widely used among several other technologies to detect risk of fog formation on the cabin side (or inner) surface of the windshield. The erroneous information from a sensor such as the measurement lag can cause imperfect visibility due to the delayed response of the climate control system. Also the high value, low cost vehicles may not have this sensor due to its high cost. A differential equation based model of the cabin air humidity is proposed to calculate in real-time specific humidity of the passenger compartment air. The specific humidity is used along with the windshield surface temperature to determine relative humidity of air and therefore, the risk of fog formation on the interior surface of a windshield.
Journal Article

Exhaust Valve & Valve Seat Insert – Development for an Industrial LPG Application

2009-05-13
2009-01-1602
Automotive engines are regularly utilized in the material handling market where LPG is often the primary fuel used. When compared to gasoline, the use of gaseous fuels (LPG and CNG) as well as alcohol based fuels, often result in significant increases in valve seat insert (VSI) and valve face wear. This phenomenon is widely recognized and the engine manufacturer is tasked to identify and incorporate appropriate valvetrain material and design features that can meet the ever increasing life expectations of the end-user. Alternate materials are often developed based on laboratory testing – testing that may not represent real world usage. The ultimate goal of the product engineer is to utilize accelerated lab test procedures that can be correlated to field life and field failure mechanisms, and then select appropriate materials/design features that meet the targeted life requirements.
Technical Paper

Application of Principle Component Analysis to Low Speed Rear Impact - Design for Six Sigma Project at General Motors

2009-04-20
2009-01-1204
This study involves an application of Principal Component Analysis (PCA) conducted in support of a Design for Six Sigma (DFSS) project. Primary focus of the project is to optimize seat parameters that influence Low Speed Rear Impact (LSRI) whiplash performance. During the DFSS study, the project team identified a need to rank order critical design factors statistically and establish their contribution to LSRI performance. It is also required to develop a transfer function for the LSRI rating in terms of test response parameters that can be used for optimization. This statistical approach resulted in a reliable transfer function that can applied across all seat designs and enabled us to separate vital few parameters from several many.
Technical Paper

Shudder Durability of a Wet Launch Clutch Part I – Thermal Study and Development of Durability Test Profile

2009-04-20
2009-01-0329
Under the initiative of the United States Council for Automotive Research LLC (USCAR§) Transmission Working Group, a collaborative effort was made with LuK USA LLC to study the influence of the friction interface parameters on the shudder durability of a wet launch clutch. A test bench was designed. Clutch configurations with different combinations of four friction materials (A, B, C and D), three groove patterns (waffle, radial and waffle–parallel) and two separator plate conditions (nitrided and non–nitrided) were considered. Considerable improvement in performance was seen by changing from CVT fluid* to DCT fluid*. A thermal analysis based on thermal model predictions and measurement correlations was conducted. Comparisons of clutch configurations with four and five friction plates were done. The waffle and radial groove pattern showed better heat transfer than the waffle–parallel groove pattern.
Journal Article

Superelement, Component Mode Synthesis, and Automated Multilevel Substructuring for Rapid Vehicle Development

2008-04-14
2008-01-0287
This paper presents the new techniques/methods being used for the rapid vehicle development and system level performance assessment. It consists of two parts: the first part presents the automated multilevel substructuring (AMLS) technique, which greatly reduces the computational demands of larger finite element models with millions of degrees of freedom(DOF) and extends the capabilities to higher frequencies and higher level of accuracy; the second part is on the superelement in conjunction with the Component Mode Synthesis (CMS) and also Automated Component Mode Synthesis (ACMS) techniques. In superelement, a full vehicle model is divided into components such as Body-in-white, Front cradle/chassis, Rear cradle/chassis, Exhaust, Engine, Transmission, Driveline, Front suspension, Rear suspension, Brake, Seats, Instrument panel, Steering system, tires, etc. with each piece represented by reduced stiffness, mass, and damping matrices.
Technical Paper

Hybrid Technique Based on Finite Element and Experimental Data for Automotive Applications

2007-04-16
2007-01-0466
This paper presents the hybrid technique application in identifying the noise transfer paths and the force transmissibility between the interfaces of the different components in the vehicle. It is the stiffness based formulation and is being applied for the low to mid frequency range for the vibration and structure borne noise. The frequency response functions such as dynamic compliance, mobility, inertance, and acoustic sensitivity, employed in the hybrid method, can either be from the test data or finite element solution or both. The Source-Path-Receiver concept is used. The sources can be from the road surface, engine, transmission, transfer case, prop-shaft, differential, rotating components, chain drives, pumps, etc., and the receiver can be driver/passenger ears, steering column, seats, etc.
Technical Paper

Optimization of HVAC Temperature Regulation Curves with modeFrontier and Fluent

2007-04-16
2007-01-1397
Simultaneously obtaining a linear temperature control curve along with the correct temperature stratification at module outlets is one of the most difficult tasks in developing an automotive HVAC module. Traditionally, Computational Fluid Dynamics (CFD) development of temperature control linearity has been accomplished by iteratively adjusting the location, size and orientation of baffles which redirect warm and cold airstreams. This approach demands considerable interaction from the engineer in building the computational mesh, defining boundary and operating conditions and post processing the simulation results. The present study was conducted to investigate the optimization of HVAC temperature regulation curves using the multi-objective optimization code modeFrontier (1, 3) in conjunction with CFD code, Fluent (2). An auxiliary HVAC module was selected for the present study.
Technical Paper

Radiation Efficiency Measurements of a Microstrip Antenna Designed for the Reception of XM Satellite Radio Signals

2006-04-03
2006-01-1354
The efficiency of several Microstrip (Patch) antennas with varying substrate heights etched on a substrate material with a relatively high dielectric constant was calculated from gain measurement data. The radiation efficiency of a 4, 5, 6 and 7mm thick patches were measured to be 0.8887, 0.9097, 0.9163 and 0.9202, respectively. The efficiency of a λ/4 monopole at the same frequency was measured to be 0.9389. To achieve a -2.0 dBi of gain at an elevation angle θ = 90° and a +2 dBic at elevation angles between 30° and 70° for the XM signal reception, the patch efficiency has to exceed the efficiency of a λ/4 monopole at the same frequency.
Technical Paper

High Performance Vehicle Chassis Structure for NVH Reduction

2006-04-03
2006-01-0708
The main objective of this paper was to determine if the vehicle performance can be maintained with a reduced mass cradle structure. Aluminum and magnesium cradles were compared with the baseline steel cradle. First, the steel chassis alone is analyzed with the refined finite element model and validated with experimental test data for the frequencies, normal modes, stiffnesses and the drive-point mobilities at various attachment mount/bushing locations. The superelement method in conjunction with the component mode synthesis (CMS) technique was used for each component of the vehicle such as Body-In-White, Instrument Panel, Steering Column Housing & Wheel, Seats, Cradles, CRFM, etc. After assemblage of all the superelements, analysis was carried out by changing the front and rear cradle gauges and the material properties. The drive-point mobility response was computed at various locations and the noise (sound pressure) level was calculated at the driver and passenger ears.
Technical Paper

SEA Modeling of A Vehicle Door System

2005-05-16
2005-01-2427
The Door system is one of the major paths for vehicle interior noise under a variety of load conditions. In this paper we consider the elements of the door lower (excluding glass) in terms of noise transmission. Passenger car doors are comprised of the outer skin, door cavity, door inner sheet metal, vapor barrier, and interior trim. Statistical Energy Analysis (SEA) models must effectively describe these components in terms of their acoustic properties and capture the dominant behaviors relative to the overall door system. In addition, the models must interface seamlessly with existing vehicle level SEA models. SEA modeling techniques for the door components are discussed with door STL testing and model correlation results.
Technical Paper

A Subsystem Crash Test Methodology for Retention of Convenience Organizer Equipment System in Rear Impact

2005-04-11
2005-01-0735
Any equipment system or vehicle component like the Convenience Organizer storage system needs to be retained within the cargo compartment without intruding into the passenger compartment for occupant safety during a high speed impact. This paper outlines a test method to evaluate the retention of such a system in a rear impact environment. The method utilizes a low speed barrier to simulate a high speed RMB (Rear Moving Barrier) impact. The content of the low speed RMB impact test setup was developed utilizing DYNA3D analytical simulation results from a full vehicle model subjected to high-speed RMB impact. The retention of the equipment developed through this test method was confirmed on a full scale rear impact test.
Technical Paper

On the Potential of Low Heat Rejection DI Diesel Engines to Reduce Tail-Pipe Emissions

2005-04-11
2005-01-0920
Heat transfer to the combustion chamber walls constitutes a significant portion of the overall energy losses over the working cycle of a direct injection (DI) diesel engine. In the last few decades, numerous research efforts have been devoted to investigating the prospects of boosting efficiency by insulating the combustion chamber. Relatively few studies have focused on the prospects of reducing emissions by applying combustion chamber insulation. A main purpose of this study is to assess the potential of reducing in-cylinder soot as well as boosting aftertreatment performance by means of partially insulating the combustion chamber. Based on the findings from a conceptual study, a Low Heat Rejection (LHR) design, featuring a Nimonic 80A insert into an Aluminum piston, was developed and tested experimentally at various loads in a single-cylinder Hatz-engine.
Technical Paper

A Multi-hop Mobile Networking Test-bed for Telematics

2005-04-11
2005-01-1484
An onboard vehicle-to-vehicle multi-hop wireless networking system has been developed to test the real-world performance of telematics applications. The system targets emergency and safety messaging, traffic updates, audio/video streaming and commercial announcements. The test-bed includes a Differential GPS receiver, an IEEE 802.11a radio card modified to emulate the DSRC standard, a 1xRTT cellular-data connection, an onboard computer and audio-visual equipment. Vehicles exchange data directly or via intermediate vehicles using a multi-hop routing protocol. The focus of the test-bed is to (a) evaluate the feasibility of high-speed inter-vehicular networking, (b) characterize 5.8GHz signal propagation within a dynamic mobile ad hoc environment, and (c) develop routing protocols for highly mobile networks. The test-bed has been deployed across five vehicles and tested over 400 miles on the road.
Technical Paper

Evaluation of Automatic Fire Suppression Systems in Full Scale Vehicle Fire Tests and Static Vehicle Fire Tests

2005-04-11
2005-01-1788
A prototype fire suppression system was tested in one full-scale vehicle crash tests and three static vehicle fire tests. The prototype fire suppression system consisted of 2 Solid Propellant Gas Generators and two optical detectors. These components were installed on the hood of the test vehicle. A vehicle crash test and a series of static vehicle fire tests were performed to determine the effectiveness of this prototype fire suppression systems in extinguishing fires in the engine compartment of a crashed vehicle
Technical Paper

Vehicle Brake Performance Assessment Using Subsystem Testing and Modeling

2005-04-11
2005-01-0791
In recent years, the automotive industry has seen a rapid decrease in product development cycle time and a simultaneous increase in the variety of vehicles offered in the marketplace. These trends require a rigorous yet efficient systems engineering approach to the development of automotive braking systems. This paper provides an overview of an objective process for developing and predicting vehicle-level brake performance through an approach using both laboratory subsystem testing and math modeling.
Technical Paper

CFD for Flow Rate and Air Re-Circulation at Vehicle Idle Conditions

2004-03-08
2004-01-0053
CFD method for the calculation of flow rate and air re-circulation at vehicle idle conditions is described. A small velocity is added to the ambient airflow in order to improve the numerical stability. The flow rate passing through the heat exchangers is insensitive to the ambient velocity, since the flow rate is largely determined by the fan operation. The air re-circulation, however, is quite sensitive to the ambient air velocity. The ambient velocity of U=-1m/s was found to be the more critical case, and is recommended for the air re-circulation analysis. The CFD analysis can also lead to design modifications improving the air re-circulation.
Technical Paper

“Multi Vector” Field of View Design Tool

2004-03-08
2004-01-0380
A multi vector design tool to accurately predict instrument panel obscuration was developed to insure that critical legal displays in vehicles are not obscured. The concept provides for a computer generated light source shaped to replicate the human eyes. The light source is then projected onto a 3D math based arrangement and the resultant shadows are visible on the instrument panel surface and its displays. Design studios require criteria for the placement of the instrument cluster gages and displays, various controls, switches, and steering column stalks before an interior theme can be completed. Therefore, instrument panel obscuration and visibility must be determined early in the design process. The obscured areas are a function of the instrument panel surface, steering wheel rim, hub, spokes, and the location of the driver's eyes. This light source method allows engineers and designers the ability to quickly determine obscured areas.
Technical Paper

A Design Tool for Producing 3D Solid Models from Sketches

2004-03-08
2004-01-0482
A novel design tool that produces solid model geometry from computer-generated sketches was developed to dramatically increase the speed of component development. An understanding of component part break-up and section shape early in the design process can lead to earlier part design releases. The concept provides for a method to create 3-dimensional (3D) solid models from 2-dimensional (2D) digital image sketches. The traditional method of creating 3-dimensional surface models from sketches or images involves creation of typical sections and math surfaces by referencing the image only. There is no real use of the sketch within the math environment. An interior instrument panel and steering wheel is described as an example. The engineer begins with a 2-dimensional concept sketch or digital image. The sketch is scaled first by determining at least three known feature diameters.
X