Refine Your Search

Topic

Author

Search Results

Technical Paper

Injury Risk Curves for the WorldSID 50th Male Dummy

2009-11-02
2009-22-0016
The development of the WorldSID 50th percentile male dummy was initiated in 1997 by the International Organization for Standardization (ISO/SC12/TC22/WG5) with the objective of developing a more biofidelic side impact dummy and supporting the adoption of a harmonized dummy into regulations. More than 45 organizations from all around the world have contributed to this effort including governmental agencies, research institutes, car manufacturers and dummy manufacturers. The first production version of the WorldSID 50th male dummy was released in March 2004 and demonstrated an improved biofidelity over existing side impact dummies. Full-scale vehicle tests covering a wide range of side impact test procedures were performed worldwide with the WorldSID dummy. However, the vehicle safety performance could not be assessed due to lack of injury risk curves for this dummy. The development of these curves was initiated in 2004 within the framework of ISO/SC12/TC22/WG6 (Injury criteria).
Technical Paper

Concept and Implementation of a Robust HCCI Engine Controller

2009-04-20
2009-01-1131
General Motors recently demonstrated two driveable test vehicles powered by a Homogeneous Charge Compression Ignition (HCCI) engine. HCCI combustion has the potential of a significant fuel economy benefit with reduced after-treatment cost. However, the biggest challenge of realizing HCCI in vehicle applications is controlling the combustion process. Without a direct trigger mechanism for HCCI's flameless combustion, the in-cylinder mixture composition and temperature must be tightly controlled in order to achieve robust HCCI combustion. The control architecture and strategy that was implemented in the demo vehicles is presented in this paper. Both demo vehicles, one with automatic transmission and the other one with manual transmission, are powered by a 2.2-liter HCCI engine that features a central direct-injection system, variable valve lift on both intake and exhaust valves, dual electric camshaft phasers and individual cylinder pressure transducers.
Technical Paper

Data-Driven Driving Skill Characterization: Algorithm Comparison and Decision Fusion

2009-04-20
2009-01-1286
By adapting vehicle control systems to the skill level of the driver, the overall vehicle active safety provided to the driver can be further enhanced for the existing active vehicle controls, such as ABS, Traction Control, Vehicle Stability Enhancement Systems. As a follow-up to the feasibility study in [1], this paper provides some recent results on data-driven driving skill characterization. In particular, the paper presents an enhancement of discriminant features, the comparison of three different learning algorithms for recognizer design, and the performance enhancement with decision fusion. The paper concludes with the discussions of the experimental results and some of the future work.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Technical Paper

Prediction of Brake System Performance during Race Track/High Energy Driving Conditions with Integrated Vehicle Dynamics and Neural-Network Subsystem Models

2009-04-20
2009-01-0860
In racetrack conditions, brake systems are subjected to extreme energy loads and energy load distributions. This can lead to very high friction surface temperatures, especially on the brake corner that operates, for a given track, with the most available traction and the highest energy loading. Individual brake corners can be stressed to the point of extreme fade and lining wear, and the resultant degradation in brake corner performance can affect the performance of the entire brake system, causing significant changes in pedal feel, brake balance, and brake lining life. It is therefore important in high performance brake system design to ensure favorable operating conditions for the selected brake corner components under the full range of conditions that the intended vehicle application will place them under. To address this task in an early design stage, it is helpful to use brake system modeling tools to analyze system performance.
Technical Paper

Compatibility Study of Fluorinated Elastomers in Automatic Transmission Fluids

2008-06-23
2008-01-1619
A compatibility study was conducted on fluorinated elastomers (FKM and FEPM) in various Automatic Transmission Fluids (ATF). Representative compounds from various FKM families were tested by three major FKM raw material producers - DuPont Performance Elastomers (DPE), Dyneon and Solvay. All involved FKM compounds were tested in a newly released fluid (ATF-A) side-by-side with conventional transmission fluids, at 150°C for various time intervals per ASTM D471. In order to evaluate the fluid compatibility limits, some FKM's were tested as long as 3024 hrs, which is beyond the normal service life of seals. Tensile strength and elongation were monitored as a function of ATF exposure time. The traditional dipolymers and terpolymers showed poor resistance to the new fluid (ATF-A). Both types demonstrated significant decreases in strength and elongation after extended fluid exposure at 150°C.
Journal Article

Pneumatic Brake Apply System Response and Aero-Acoustic Performance Considerations

2008-04-14
2008-01-0821
Over the past decade, the automotive industry has seen a rapid decrease in product development cycle time and an ever increasing need by original equipment manufacturers and their suppliers to differentiate themselves in the marketplace. This differentiation is increasingly accomplished by introducing new technology while continually improving the performance of existing automotive systems. In the area of automotive brake system design, and, in particular, the brake apply subsystem, an increased focus has been placed on the development of electrohydraulic apply systems and brake-by-wire systems to replace traditional pneumatic and hydraulic systems. Nevertheless, the traditional brake apply systems, especially vacuum-based or pneumatic systems, will continue to represent the majority of brake apply system production volume into the foreseeable future, which underscores the need to improve the performance and application of these traditional systems in passenger cars and light-trucks.
Journal Article

The Electrification of the Automobile: From Conventional Hybrid, to Plug-in Hybrids, to Extended-Range Electric Vehicles

2008-04-14
2008-01-0458
A key element of General Motors' Advanced Propulsion Technology Strategy is the electrification of the automobile. The objectives of this strategy are reduced fuel consumption, reduced emissions and increased energy security/diversification. The introduction of hybrid vehicles was one of the first steps as a result of this strategy. To determine future opportunities and direction, an extensive study was completed to better understand the ability of Plug-in Hybrid Electric Vehicles (PHEV) and Extended-Range Electric Vehicles (E-REV) to address societal challenges. The study evaluated real world representative driving datasets to understand actual vehicle usage. Vehicle simulations were conducted to evaluate the merits of PHEV and E-REV configurations. As derivatives of conventional full hybrids, PHEVs have the potential to deliver a significant reduction in petroleum usage.
Technical Paper

Measurements of Cycle to Cycle Variability of the Inlet Flow of Fuel Injectors Using LDA

2006-10-16
2006-01-3314
The focus of this research effort was to develop a technique to measure the cyclic variability of the mass injected by fuel injectors. Successful implementation of the measurement technique introduced in this paper can be used to evaluate injectors and improve their designs. More consistent and precise fuel injectors have the potential to improve fuel efficiency, engine performance, and reduce emissions. The experiments for this study were conducted at the Michigan State University Automotive Research Experiment Station. The setup consists of a fuel supply vessel pressurized by compressed nitrogen, a Dantec laser Doppler anemometry (LDA) system to measure the centerline velocity of fuel, a quartz tube for optical access, and a Cosworth IC 5460 to control the injector. The detector on the LDA system is capable of resolving Doppler bursts as short as 6μs, depending on the level of seeding, thus giving a detailed time/velocity profile.
Technical Paper

Global Research and Development: GM Case Study India

2006-10-16
2006-21-0086
Global R&D is in its infant stages. Senior executives and their organizations need to develop deeper understanding of the opportunities and challenges of off-shoring R&D. While global pressure will continue to mount to deliver more value at ever lower cost, the labor cost arbitrage break in countries such as China or India will not last forever. The fundamental challenge is to use the current low-cost advantage to build rapidly a sustainable technology, product and service advantage. This requires the development of a balanced local growth strategy that is well adapted to the regional strengths while ensuring a seamless global integration of people, organizations, and processes. This paper focuses on the build-up of GM's R&D activities in India with an emphasis on research in one of the key thrust areas in GM R&D - Automotive Electronics, Controls, and Software. Lessons learned apply also to development.
Technical Paper

Brake-by-Wire, Motivation and Engineering - GM Sequel

2006-10-08
2006-01-3194
Achieving optimum results and developing systems that are towards production intent is a challenge that the General Motors Sequel platform not only overcame, but also enhanced by providing an opportunity to achieve maximum integration of new technologies. Implementation of these new technologies during this project enabled us to understand the impact and rollout for future production programs to enhance performance and add features that will enable General Motors to make quantum leaps in the automotive industry. Presented are aspects, objectives and features of the Sequel's advanced Brake-By-Wire system as it migrates from concept towards production readiness. Also included in the paper are the objectives for system design; functional/performance requirements and the desired fault tolerance. The system design, component layout, control and electrical system architecture overviews are provided.
Technical Paper

Development of a Steer-by-Wire System for the GM Sequel

2006-04-03
2006-01-1173
Steer-by-wire systems (SBW) offer the potential to enhance steering functionality by enabling features such as automatic lane keeping, park assist, variable steer ratio, and advanced vehicle dynamics control. The lack of a steering intermediate shaft significantly enhances vehicle architectural flexibility. These potential benefits led GM to include steer-by-wire technology in its next generation fuel cell demonstration vehicle, called “Sequel.” The Sequel's steer-by-wire system consists of front and rear electromechanical actuators, a torque feedback emulator for the steering wheel, and a distributed electronic control system. Redundancy of sensors, actuators, controllers, and power allows the system to be fault-tolerant. Control is provided by multiple ECU's that are linked by a fault-tolerant communication system called FlexRay. In this paper, we describe the objectives for fault tolerance and performance that were established for the Sequel.
Technical Paper

Development of the Hybrid System for the Saturn VUE Hybrid

2006-04-03
2006-01-1502
The hybrid system for the 2007 Model Year Saturn VUE Green Line Hybrid SUV was designed to provide the fuel economy of a compact sedan, while delivering improved acceleration performance over the base vehicle, and maintaining full vehicle utility. Key elements of the hybrid powertrain are a 2.4L DOHC engine with dual cam-phasers, a modified 4-speed automatic transmission, an electric motor-generator connected to the crankshaft through a bi-directional belt-drive system, power electronics to control the motor-generator, and a NiMH battery pack. The VUE's hybrid functionality includes: engine stop-start, regenerative braking, intelligent charge control of the hybrid battery, electric power assist, and electrically motored creep. Methods of improving urban and highway fuel economy via optimal use of the hybrid motor and battery, engine and transmission hardware and controls modifications, and vehicle enhancements, are discussed.
Technical Paper

Optimal Mount Selection with Scattered and Bundled Stiffness Rates

2006-04-03
2006-01-0736
The optimal selection of vehicle body and powertrain mounts from “mount libraries” is one of the major undertakings to achieve optimal vehicle dynamics and N&V performance through the reuse of existing mount designs. The great challenges of the process are due to the facts that conventional optimization procedures, either through simulation or DOE, can not be used directly because the stiffness rates of the mounts are scattered and bundled. Sorting out the best through hardware tests is generally unrealistic simply due to the huge number of mount combinations. This paper presents a new approach to the optimal mount selection, and demonstrates through applications that it is efficient and reliable. This approach characterizes a mount by its effective stiffness rate and evaluates its deviation from an associated target. Continuous dummy variables are used to determine the selection targets through conventional processes for performance optimization.
Technical Paper

Fatigue Strength Effect of Thread Forming Process in Cast Aluminum

2006-04-03
2006-01-0780
Two thread forming processes, rolling and cutting, were studied for their effects on fatigue in cast aluminum 319-T7. Material was excised from cylinder blocks and tested in rotating-bending fatigue in the form of unnotched and notched specimens. The notched specimens were prepared by either rolling or cutting to replicate threads in production-intent parts. Cut threads exhibited conventional notch behavior for notch sensitive materials. In contrast, plastic deformation induced by rolling created residual compressive stresses in the notch root and significantly improved fatigue strength to the point that most of the rolled specimens broke outside the notch. Fractographic and metallographic investigation showed that cracks at the root of rolled notches were deflected upon initiation. This lengthened their incubation period, which effectively increased fatigue resistance.
Technical Paper

Simulation of Vehicle Exterior Sound Fields by High Frequency Boundary Element Method

2005-05-16
2005-01-2328
With Statistical Energy Analysis (SEA) proven to be a powerful tool for airborne noise analysis, the capability of predicting the exterior sound field around a vehicle at high frequencies (the load case in the SEA analysis) is of particular interest to OEMs and suppliers. This paper employs the High Frequency Boundary Element Method (HFBEM) to simulate the scattered exterior sound field distribution due to a monopole source. It is shown that the proposed method is able to efficiently predict the spatial and frequency averaged sound pressure levels reasonably well up to 10 kHz, even at points in the near field of the vehicle body.
Technical Paper

Design of the Milford Road Course

2005-04-11
2005-01-0385
The Milford Road Course is a new 2.9 mi (4.6 km), 20 turn, configurable closed course with 135 ft (41 m) of elevation change, constructed at the General Motors Proving Ground in Milford, MI, USA. This facility provides a convenient and safe venue for engineers to evaluate vehicle limit performance over extensive combinations of vertical, lateral and longitudinal acceleration at a wide range of speeds. This paper discusses the vehicle dynamics aspects of the facility design, simulation and construction.
Technical Paper

An Integrated Chassis Control for Vehicle-Trailer Stability and Handling Performance

2004-05-04
2004-01-2046
To cope with the conflict requirements between the stability and handling performance, and the high-order and complex vehicle-trailer plant, a model tracking method is proposed. With this approach, a feedback control is designed to “decouple” the vehicle and the trailer plant, such that each tracks a well-defined second-order reference model independently yet coordinately. A feedforward control is designed to maintain its system steady-state performance. As a result, the proposed approach not only improves the system transient responses, but also its steady-state performance. This approach further yields a simple yet analytical control derivation that provides more insight to the system dynamics.
Technical Paper

Obtaining the Coupled Response of Structures from their Mass Loaded Forced Response

2004-03-08
2004-01-0759
This paper outlines a newly developed method for predicting the coupled response of structures from their uncoupled forced responses without having to know the forces acting on such structures. It involves computing the forced response of originally uncoupled structures with several mass loadings at a potential coupling point. The response data obtained from such computations is then used to predict the coupled response. The theory for discrete linear systems is outlined in the paper and a numerical example is given to demonstrate the validity, advantages and limitations of the method. The method is primarily devised to obtain coupled response of linear dynamic systems from independent and uncoupled analytical simulations. Its application significantly decreases computation time by reducing the simulation model size and is excellent for “what if” scenarios where a large number of simulations would otherwise be necessary.
Technical Paper

GM's New Silverado and Sierra Heavy Duty Truck with the Duramax 6600 Diesel Powertrain

2001-11-12
2001-01-2705
Vehicle requirements are measurable and define the performance of a system and its design constraints. Requirements are developed and translated from the voice of the buying customer, the voice of the government, and the voice of General Motors. Duramax powertrain subsystem requirements are developed from the vehicle requirements. This “flow down” approach optimizes the vehicle as a system. The packaging envelope, common interfaces, and manufacturing impacts were the outcome of the Vehicle Portfolio Development Process. Project execution was a global development process executed by Isuzu Engineers in Japan, Allison Automatic Transmission Engineers in Indianapolis, ZF Manual Transmission Engineers in Detroit, and General Motors Engineers in Detroit.
X