Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Performance Evaluation of an Eco-Driving Controller for Fuel Cell Electric Trucks in Real-World Driving Conditions

2024-04-09
2024-01-2183
Range anxiety in current battery electric vehicles is a challenging problem, especially for commercial vehicles with heavy payloads. Therefore, the development of electrified propulsion systems with multiple power sources, such as fuel cells, is an active area of research. Optimal speed planning and energy management, referred to as eco-driving, can substantially reduce the energy consumption of commercial vehicles, regardless of the powertrain architecture. Eco-driving controllers can leverage look-ahead route information such as road grade, speed limits, and signalized intersections to perform velocity profile smoothing, resulting in reduced energy consumption. This study presents a comprehensive analysis of the performance of an eco-driving controller for fuel cell electric trucks in a real-world scenario, considering a route from a distribution center to the associated supermarket.
Technical Paper

Vehicle Yaw Dynamics Safety Analysis Methodology based on ISO-26262 Controllability Classification

2024-04-09
2024-01-2766
Complex chassis systems operate in various environments such as low-mu surfaces and highly dynamic maneuvers. The existing metrics for lateral motion hazard by Neukum [13] and Amberkar [17] have been developed and correlated to driver behavior against disturbances on straight line driving on a dry surface, but do not cover low-mu surfaces and dynamic driving scenarios which include both linear and nonlinear region of vehicle operation. As a result, an improved methodology for evaluating vehicle yaw dynamics is needed for safety analysis. Vehicle yaw dynamics safety analysis is a methodical evaluation of the overall vehicle controllability with respect to its yaw motion and change of handling characteristic.
Technical Paper

CAE Transfer Path Analysis and Its Accuracy Evaluation Using a Validation Method

2024-04-09
2024-01-2740
In-cabin Noise at low frequency (due to engine or road excitation) is a major issue for NVH engineers. Usually, noise transfer function (NTF) analysis is carried out, due to absence of accurate actual loads for sound pressure level (SPL) analysis. But NTF analysis comes with the challenge of having too many paths (~20 trimmed body attachment locations: engine and suspension mounts, along with 3 directions for each) to work on, which is cumbersome. Physical test transfer path analysis (TPA) is a process of root cause analysis, by which critical contributing paths can be obtained for a problem peak frequency. In addition to that, loads at the attachment points of trimmed body of test vehicle can be derived. Both these outputs are conventionally used in CAE analysis to work on either NTF or SPL. The drawback of this conventional approach is that the critical bands and paths suggested are based on the problem peak frequency of test vehicle which may be different in CAE.
Technical Paper

Sound Transmission Loss through Front of Dash and Instrumental Panel

2024-04-09
2024-01-2349
The subsystem of front of dash (FOD) and instrument panel (IP) is a critical path to isolate the powertrain noise and road noise for vehicles. This subsystem mainly consists of sheet metal, dash mats, IP, and the components inside IP such as HVAC and wiring harness. To achieve certain level of cabin quietness, the sound transmission loss performance of this subsystem is usually used as a quantifier. In this paper, the sound transmission loss through the FOD and IP is investigated up to 10kHz, through both acoustic testing and numerical simulation. In the acoustic testing, the subsystem is cut from a vehicle and installed on the wall of two-rooms STL testing suite, with source room being reverberant and receiver room being anechoic. In the testing, various scenarios are measured to understand the contributions from different components.
Technical Paper

Torque Ripple Cancellation to Reduce Electric Motor Noise for Electric Vehicles

2024-04-09
2024-01-2215
Electric motor whine is a major NVH source for electric vehicles. Traditional mitigation methods focus on e-motor hardware optimization, which requires long development cycles and may not be easily modified when the hardware is built. This paper presents a control- and software-based strategy to reduce the most dominant motor order of an IPM motor for General Motors’ Ultium electric propulsion system, using the patented active Torque Ripple Cancellation (TRC) technology with harmonic current injection. TRC improves motor NVH directly at the source level by targeting the torque ripple excitations, which are caused by the electromagnetic harmonic forces due to current ripples. Such field forces are actively compensated by superposition of a phase-shifted force of the same spatial order by using of appropriate current.
Technical Paper

3D CFD Modeling of an Electric Motor to Predict Spin Losses at Different Temperatures

2024-04-09
2024-01-2208
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed.
Technical Paper

Electric Motor Noise Reduction with Stator Mounted NVH Insert Ring

2024-04-09
2024-01-2205
Electric motor noise mitigation is a challenge in electric vehicles (EVs) due to the lack of engine masking noise. The design of the electric motor mounting configuration to the motor housing has significant impacts on the radiated noise of the drive unit. The stator can be bolted or interference-fit with the housing. A bolted stator creates motor whine and vibration excited by the motor torque ripple at certain torsional resonance frequencies. A stator with interference fit configuration stiffens the motor housing and pushes resonances to a higher frequency range, where masking noise levels are higher at faster vehicle speeds. However, this comes with additional cost and manufacturing process and may impact motor efficiency due to high stress on stators. In this paper, a thin sheet metal NVH ring is developed as a tunable stiffness device between the stator and the motor housing. It is pre-compressed and provides additional torsional rigidity to mitigate torsional excitations.
Technical Paper

Implementation of Machine Learning in Acoustics Source Detection by Leveraging Synthetic Sound Data Generation Approach

2024-01-16
2024-26-0213
E-Mobility and low noise IC Engines has pushed product development teams to focus more on sound quality rather than just on reduced noise levels and legislative needs. Furthermore, qualification of products from a sound quality perspective from an end of line testing requirement is also a major challenge. End of line (EOL) NVH testing is key evaluation criteria for product quality with respect to NVH and warranty. Currently for subsystem or component level evaluation, subjective assessment of the components is done by a person to segregate OK and NOK components. As human factor is included, the process becomes very subjective and time consuming. Components with different acceptance criteria will be present and it’s difficult to point out the root cause for NOK components. In this paper, implementation of machine learning is done for acoustic source detection at end of line testing.
Journal Article

A Process to Characterize the Sound Directivity Pattern of AVAS Speaker

2023-05-08
2023-01-1095
Speaker performance in Acoustic Vehicle Alerting System (AVAS) plays a crucial role for pedestrian safety. Sound radiation from AVAS speaker has obvious directivity pattern. Considering this feature is critical for accurately simulating the exterior sound field of electrical vehicles. This paper proposes a new process to characterize the sound directivity pattern of AVAS speaker. The first step of the process is to perform an acoustic testing to measure the sound pressure radiated from the speaker at a certain number of microphone locations in a free field environment. Based on the geometry of a virtual speaker, the locations of each microphone and measured sound pressure data, an inverse method, namely the inverse pellicular analysis, is adopted to recover a set of vibration pattern of the virtual speaker surface. The recovered surface vibration pattern can then be incorporated in the full vehicle numerical model as an excitation for simulating the exterior sound field.
Technical Paper

Conducting Comparisons of Multi-Body Dynamics Solvers with a Goal of Establishing Future Direction

2023-04-11
2023-01-0166
As passenger vehicle design evolves and accelerates, the use of multi-body dynamics solvers has proven to be invaluable in the engineering workflow. MBD solvers allow engineers to build virtual vehicle models that can accurately simulate vehicle responses and calculate internal forces, which previously could only be assessed using physical prototype builds with hundreds of measurement transducers. Evaluation and selection of solvers within an engineering environment is inherently a multi-dimensional activity that can include ease of use, retention of previously developed expertise, accuracy, speed, and integration with existing analysis processes. We discuss here some of the challenges present in developing capability and accumulating data to support each of these criteria. Developing a pilot model that is capable of being applied to a comprehensive set of use cases, and then verifying those use cases, required significant project management activity.
Technical Paper

Analytical Method to Predict Floor Console Lid Latch Rattle Acoustic Noise

2023-04-11
2023-01-0873
This paper is a continuation of previously published technical paper SAE 2022-01-0314. The preceding work described an analytical methodology to predict the vehicle interior trim squeak and rattle issues upfront in the design cycle using a “relative displacement” or “contact force” metric; the methodology was implemented on the center floor console armrest latch using a linear finite element model. The work is logically extended to predict the squeak and rattle issues quantitatively using now an “acoustic noise” metric, this enables a direct comparison with the physical test results and helps to further refine the design best practices. This approach combines Finite Element Method (FEM) and Boundary Element Method (BEM) to estimate structural vibration response and acoustic sound pressure respectively.
Technical Paper

Vehicle Noise Sensitivity to Different Levels of Taper Wheel Bearing Brinell Damage for Body-on-Frame Passenger Vehicles

2022-09-19
2022-01-1192
This paper reviews the relationship between taper wheel bearing damage and vehicle noise and vibration for a body-on-frame pickup truck and a body-on-frame SUV. In addition to understanding how the different levels of bearing damage relate to vehicle noise, it also discusses the level of noise versus the damaged bearing’s position in the vehicle. For this study, the wheel bearing supplier provided front and rear bearings with various amounts of Brinell damage to the bearing raceways. The different bearings were evaluated subjectively for noise in the vehicle. After vehicle testing, the bearing raceway Brinell depths were measured to correlate the level of bearing damage to vehicle noise. The study shows the relationship between bearing Brinell dent depth and vehicle noise for body-on-frame light trucks and SUVs. The noise was most apparent in vehicles between 45 and 60 mph. For bearings with moderate levels of damage, steering inputs were required to hear noise.
Journal Article

Dual Transfer Function Approach to Analyze Low Frequency Brake Noise without Comprehending Friction Behavior in Advance

2022-09-19
2022-01-1176
Analyzing low frequency brake noise (< 300Hz) has been challenging due to the difficulty associated with calculating dynamic friction behavior and its multiple structure-borne noise transfer paths. In theory, it is possible to simulate sound pressure level inside the cabin by calculating a transfer function between friction excitation, which is on the interface between rotor and pads, and cabin acoustic response, and by multiplying dynamic friction force at the rotor-pad interface to that transfer function. However, calculating the dynamic friction forces when brake noise occurs has been one of the most challenging research topics in the brake community. This paper describes a novel concept to simulate sound pressure level inside the cabin without knowing the dynamic friction forces at the rotor-pad interface in advance.
Technical Paper

A New Predictive Vehicle Particulate Emissions Index Based on Gasoline Simulated Distillation

2022-03-29
2022-01-0489
Fuel chemistry plays a crucial role in the continued reduction of particulate emissions (PE) and cleaner air quality from vehicles and equipment powered by internal combustion engines (ICE). Over the past ten years, there have been great improvements in predictive particulate emissions indices (correlative mathematical models) based on the fuel’s composition. Examples of these particulate indices (PI) are the Honda Particulate Matter Index (PMI) and the General Motors Particulate Evaluation Index (PEI). However, the analytical chemistry lab methods used to generate data for these two PI indices are very time-consuming. Because gasoline can be mixtures of hundreds of hydrocarbon compounds, these lab methods typically include the use of the high resolution chromatographic separation techniques such as detailed hydrocarbon analysis (DHA), with 100m chromatography columns and long (3 - 4 hours) analysis times per sample.
Journal Article

The Influence of Wheel Rotations to the Lateral Runout of a Hybrid Material or Dimensionally Reduced Wheel Bearing Flange

2021-10-11
2021-01-1298
The automotive industry is continuously striving to reduce vehicle mass by reducing the mass of components including wheel bearings. A typical wheel bearing assembly is mostly steel, including both the wheel and knuckle mounting flanges. Mass optimization of the wheel hub has traditionally been accomplished by reducing the cross-sectional thickness of these components. Recently bearing suppliers have also investigated the use of alternative materials. While bearing component performance is verified through analysis and testing by the supplier, additional effects from system integration and performance over time also need to be comprehended. In a recent new vehicle architecture, the wheel bearing hub flange was reduced to optimize it for low mass. In addition, holes were added for further mass reduction. The design met all the supplier and OEM component level specifications.
Technical Paper

Practical Uses for Road Noise Cancellation

2021-08-31
2021-01-1018
Today’s automotive customers have come to expect luxury and electric vehicles to be quiet and refined pieces of machinery. As customers have come to expect powertrain cancellation in most vehicles today, they are also increasingly looking for a reduction in road noise to improve their overall perception of luxury and electric vehicles. While the field of noise cancellation is ever expanding, several auto makers are exploring the possibility of introducing a real time Road Noise Cancellation (RNC) system to meet these customer expectations. An RNC system can be integrated into the vehicle infotainment system and be utilized to either noticeably reduce or shape the vehicle noise floor. This paper will look at the current traditional Noise and Vibration (N&V) methods of reducing road noise and then also the benefits associated with actively controlling the amount of road noise using an RNC system.
Journal Article

Active Masking of Tonal Noise using Motor-Based Acoustic Generator to Improve EV Sound Quality

2021-08-31
2021-01-1021
Electric motor whine is one of the main noise sources of electric vehicles (EVs). Without engine masking noise, high pitch tonal noise from electric motor can be highly annoying and raise sound quality issues for electrified propulsion systems. This paper describes a patented new technology that controls electric motor to actively mask annoying high-pitch tonal noise by (i) controlling electric motor to create complementary low order tones to enrich sound complexity and distract high pitch tones; (ii) controlling motor to generate random dithering noise to raise masking noise floor and reduce tone-to-noise ratio around tonal targets; (iii) combining complementary injection at low frequency and dithering at high frequency for enhanced masking. This new technology enables controlling masking noise level, frequency, order and bandwidth as a function of motor torque and speed for most effective masking.
Technical Paper

Multiphysics Simulation of Electric Motor NVH Performance with Eccentricity

2021-08-31
2021-01-1077
With the emphasis of electrification in automotive industry, tremendous efforts are made to develop electric motors with high efficiency and power density, and reduce noise, vibration and harshness (NVH). A multiphysics simulation workflow is used to predict the eccentricity-induced noise for GM’s Bolt EV motor. Both static and dynamic eccentricities are investigated along with axial tilt. Analysis results show that these eccentricities play a critical role in the NVH behavior of the motor assembly. Transient electromagnetic (EM) analysis is performed first by extruding 2D stator and rotor sections to form 3D EM models. Sector model is duplicated to form full 360-degree model. Stator is split into three rotated sections to characterize stator skew, and the skew between two sections of rotor and magnets are also modelled. Sinusoidal current is applied and lumped-sum forces on each stator tooth are computed.
Technical Paper

Driving Automation System Test Scenario Development Process Creation and Software-in-the-Loop Implementation

2021-04-06
2021-01-0062
Automated driving systems (ADS) are one of the key modern technologies that are changing the way we perceive mobility and transportation. In addition to providing significant access to mobility, they can also be useful in decreasing the number of road accidents. For these benefits to be realized, candidate ADS need to be proven as safe, robust, and reliable; both by design and in the performance of navigating their operational design domain (ODD). This paper proposes a multi-pronged approach to evaluate the safety performance of a hypothetical candidate system. Safety performance is assessed through using a set of test cases/scenarios that provide substantial coverage of those potentially encountered in an ODD. This systematic process is used to create a library of scenarios, specific to a defined domain. Beginning with a system-specific ODD definition, a set of core competencies are identified.
Technical Paper

A Solution for a Fail-Operational Control of Steer-by-Wire System without Mechanical Backup Connection

2021-04-06
2021-01-0931
The past five years have seen significant research into autonomous vehicles that employ a by-wire steering rack actuator and no steering wheel. There is a clear synergy between these advancements and the parallel development of complete Steer-by-Wire systems for human-operated passenger vehicle applications. Steer-by-Wire architectures presented thus far in the literature require multiple layers of electrical and/or mechanical redundancy to achieve the safety goals. Unfortunately, this level of redundancy makes it difficult to simultaneously achieve three key manufacturer imperatives: safety, reliability, and cost. Hindered by these challenges, as of 2020 only one production car platform employs a Steer-by-Wire system. This paper presents a Steer-by-Wire architectural solution featuring fail-operational steering control architected with the objective of achieving all system safety, reliability, and cost goals.
X