Refine Your Search

Topic

Author

Search Results

Technical Paper

Disc Brake Pad Corrosion Adhesion: Test-to-Field Issue Correlation, and Exploration of Friction Physical Properties Influence to Adhesion Break-Away Force

2016-09-18
2016-01-1926
Brake pad to rotor adhesion following exposure to corrosive environments, commonly referred to as “stiction”, continues to present braking engineers with challenges in predicting issues in early phases of development and in resolution once the condition has been identified. The goal of this study took on two parts - first to explore trends in field stiction data and how testing methods can be adapted to better replicate the vehicle issue at the component level, and second to explore the impacts of various brake pad physical properties variation on stiction propensity via a controlled design of experiments. Part one will involve comparison of various production hardware configurations on component level stiction tests with different levels of prior braking experience to evaluate conditioning effects on stiction breakaway force.
Journal Article

Vehicle Level Brake Drag Target Setting for EPA Fuel Economy Certification

2016-09-18
2016-01-1925
The strong focus on reducing brake drag, driven by a historic ramp-up in global fuel economy and carbon emissions standards, has led to renewed research on brake caliper drag behaviors and how to measure them. However, with the increased knowledge of the range of drag behaviors that a caliper can exhibit comes a particularly vexing problem - how should this complex range of behaviors be represented in the overall road load of the vehicle? What conditions are encountered during coastdown and fuel economy testing, and how should brake drag be measured and represented in these conditions? With the Environmental Protection Agency (amongst other regulating agencies around the world) conducting audit testing, and the requirement that published road load values be repeatable within a specified range during these audits, the importance of answering these questions accurately is elevated. This paper studies these questions, and even offers methodology for addressing them.
Journal Article

Fast and Efficient Detection of Shading of the Objects

2015-04-14
2015-01-0371
The human thermal comfort, which has been a subject of extensive research, is a principal objective of the automotive climate control system. Applying the results of research studies to the practical problems require quantitative information of the thermal environment in the passenger compartment of a vehicle. The exposure to solar radiation is known to alter the thermal environment in the passenger compartment. A photovoltaic-cell based sensor is commonly used in the automotive climate control system to measure the solar radiation exposure of the passenger compartment of a vehicle. The erroneous information from a sensor however can cause thermal discomfort to the occupants. The erroneous measurement can be due to physical or environmental parameters. Shading of a solar sensor due to the opaque vehicle body elements is one such environmental parameter that is known to give incorrect measurement.
Technical Paper

Cabin Air Humidity Model and its Application

2015-04-14
2015-01-0369
In addition to the thermal comfort of the vehicle occupants, their safety by ensuring adequate visibility is an objective of the automotive climate control system. An integrated dew point and glass temperature sensor is widely used among several other technologies to detect risk of fog formation on the cabin side (or inner) surface of the windshield. The erroneous information from a sensor such as the measurement lag can cause imperfect visibility due to the delayed response of the climate control system. Also the high value, low cost vehicles may not have this sensor due to its high cost. A differential equation based model of the cabin air humidity is proposed to calculate in real-time specific humidity of the passenger compartment air. The specific humidity is used along with the windshield surface temperature to determine relative humidity of air and therefore, the risk of fog formation on the interior surface of a windshield.
Technical Paper

Stiffness Simulation Techniques and Test Correlations in Automotive Interior Cockpit Systems (IP, Door Trim and Floor Console Assembly)

2014-04-01
2014-01-1025
An automotive cockpit module is a complex assembly, which consists of components and sub-systems. The critical systems in the cockpit module are the instrument panel (IP), the floor console, and door trim assemblies, which consist of many plastic trims. Stiffness is one of the most important parameters for the plastic trims' design, and it should be optimum to meet all the three functional requirements of safety, vibration and durability. This paper presents how the CAE application and various other techniques are used efficiently to predict the stiffness, and the strength of automotive cockpit systems, which will reduce the product development cycle time and cost. The implicit solver is used for the most of the stiffness analysis, and the explicit techniques are used in highly non-linear situations. This paper also shows the correlations of the CAE results and the physical test results, which will give more confidence in product design and reduce the cost of prototype testing.
Technical Paper

Simplified CAE Model Technique to Predict Crush Performance of Identical Sized Passenger Vehicle Doors

2014-04-01
2014-01-0543
This paper highlights a simplified CAE model technique, which can simulate and predict door crush strength performance quickly. Such quick models can be used for DFSS and Design change studies. The proposed method suggests an equivalent sub model technique using only the door beam with tuned stiffness end springs to predict FMVSS214S full vehicle crush performance. Such models can be solved in minutes and hence very useful for DFSS studies during product design. The proposed method can be used to finalize door beam design for identical size of vehicle doors to meet required FMVSS214S crush performance. The paper highlights the door beam end springs tuning for identical size of cars and SUVs. Four vehicles were considered for the study. A single spring F-D (force -displacement) is tuned which correlated well for frond door of all the four vehicles. A separate unique spring F-D was needed which correlated well for rear door of all the 4 vehicles.
Technical Paper

Need for a Robust Asset Management Business Algorithm

2014-04-01
2014-01-0783
The Sarbanes-Oxley Act created new standards for corporate accountability pertaining to all publicly-owned and traded firms. It holds top executives accountable for the accuracy of all financial data and statements, including reported tangible assets. It requires existence of auditable internal accounting control measures and specifies adherence to new internal controls and procedures designed to ensure the validity of their financial records and physical assets. The Act presents a challenge to every manufacturing firm to have a low-cost system implemented that can produce an exact physical-asset location, existence, verification and accounting on demand. Clearly, such low-cost solutions for enterprise-wide compliance would also provide verifiable and reliable data for corporate property tax, loan collateral, and audit requirements.
Journal Article

The Electric Fan as a Cooling Package Air Flow Meter

2012-04-16
2012-01-0954
A D.C. permanent magnet motor powered fan can serve as a cooling package air flow meter. This allows for continuous air flow monitoring during vehicle operation with applications to more precise air flow control schemes. In the freewheel mode, the air flow is a linear function of the open circuit voltage of the motor. In the powered mode, the motor voltage and current can be used with a motor and fan model to predict fan air flow. The model is explained and verifying test results are presented. Comparison of the accuracy and complexity vs. that of arrays of precision anemometers is provided.
Technical Paper

FEA Predictions and Test Results from Magnesium Beams in Bending and Axial Compression

2010-04-12
2010-01-0405
Finite element analysis (FEA) predictions of magnesium beams are compared to load versus displacement test measurements. The beams are made from AM60B die castings, AM30 extrusions and AZ31 sheet. The sheet and die cast beams are built up from two top hat sections joined with toughened epoxy adhesive and structural rivets. LS-DYNA material model MAT_124 predicts the magnesium behavior over a range of strain rates and accommodates different responses in tension and compression. Material test results and FEA experience set the strain to failure limits in the FEA predictions. The boundary conditions in the FEA models closely mimic the loading and constraint conditions in the component testing. Results from quasi-static four-point bend, quasi-static axial compression and high-speed axial compression tests of magnesium beams show the beam's behavior over a range of loadings and test rates. The magnesium beams exhibit significant material cracking and splitting in all the tests.
Technical Paper

Mechanical and Thermophysical Properties of Magnesium Alloy Extrusions

2010-04-12
2010-01-0410
Magnesium alloy extrusions offer potentially more mass saving compared to magnesium castings. One of the tasks in the United States Automotive Materials Partnership (USAMP) ?Magnesium Front End Research and Development? (MFERD) project is to evaluate magnesium extrusion alloys AM30, AZ31 and AZ61 for automotive body applications. Solid and hollow sections were made by lowcost direct extrusion process. Mechanical properties in tension and compression were tested in extrusion, transverse and 45 degree directions. The tensile properties of the extrusion alloys in the extrusion direction are generally higher than those of conventional die cast alloys. However, significant tension-compression asymmetry and plastic anisotropy need to be understood and captured in the component design.
Journal Article

Exhaust Valve & Valve Seat Insert – Development for an Industrial LPG Application

2009-05-13
2009-01-1602
Automotive engines are regularly utilized in the material handling market where LPG is often the primary fuel used. When compared to gasoline, the use of gaseous fuels (LPG and CNG) as well as alcohol based fuels, often result in significant increases in valve seat insert (VSI) and valve face wear. This phenomenon is widely recognized and the engine manufacturer is tasked to identify and incorporate appropriate valvetrain material and design features that can meet the ever increasing life expectations of the end-user. Alternate materials are often developed based on laboratory testing – testing that may not represent real world usage. The ultimate goal of the product engineer is to utilize accelerated lab test procedures that can be correlated to field life and field failure mechanisms, and then select appropriate materials/design features that meet the targeted life requirements.
Journal Article

Safety Analysis of Software-intensive Motion Control Systems

2009-04-20
2009-01-0756
The auto industry has had decades of experience with designing safe vehicles. The introduction of highly integrated features brings new challenges that require innovative adaptations of existing safety methodologies and perhaps even some completely new concepts. In this paper, we describe some of the new challenges that will be faced by all OEMs and suppliers. We also describe a set of generic top-level potential hazards that can be used as a starting point for the Preliminary Hazard Analysis (PHA) of a vehicle software-intensive motion control system. Based on our experience with the safety analysis of a system of this kind, we describe some general categories of hazard causes that are considered for software-intensive systems and can be used systematically in developing the PHA.
Technical Paper

Dynamic Analysis of Transmission Torque Utilizing the Lever Analogy

2009-04-20
2009-01-1137
This paper presents methods for analyzing and visualizing the relationship between input torque, clutch torque, output torque and input acceleration during the inertia phase of a shift. The methods presented are an expansion of the lever analogy [1]. The methods are useful for understanding how geartrain inertia affects control, both its magnitude and distribution. Clutch energy and shift speeds are also easy to calculate and understand using the tools presented. Lastly the methods show why the optimum control strategies for various transmission configurations (such as DCT's, planetary transmissions, etc.) are different in the inertia phase.
Technical Paper

Data-Driven Driving Skill Characterization: Algorithm Comparison and Decision Fusion

2009-04-20
2009-01-1286
By adapting vehicle control systems to the skill level of the driver, the overall vehicle active safety provided to the driver can be further enhanced for the existing active vehicle controls, such as ABS, Traction Control, Vehicle Stability Enhancement Systems. As a follow-up to the feasibility study in [1], this paper provides some recent results on data-driven driving skill characterization. In particular, the paper presents an enhancement of discriminant features, the comparison of three different learning algorithms for recognizer design, and the performance enhancement with decision fusion. The paper concludes with the discussions of the experimental results and some of the future work.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Technical Paper

FEA Simulation of Induction Hardening and Residual Stress of Auto Components

2009-04-20
2009-01-0418
The paper studies the distributions of residual stresses in auto components after induction hardening. Three prototype parts are analyzed in this paper. Firstly, the temperature fields of the analyzed parts are quantitatively simulated during quenching by simulating surface heating to the austenitization temperature of the material. Secondly, the formation and states of the residual stresses are predicted. Therefore the distribution of residual stress is simulated and shows compressive stresses on the surface of components so that the strength can be improved. The simulated results by computer are compared with experimental results. The good comparison indicates that the results obtained by the FEA analysis are reliable. Thus, it can be concluded that the FEA (Finite element analysis) program is effectively developed to simulate heating and quenching processes and residual stresses distribution.
Technical Paper

Prediction of Brake System Performance during Race Track/High Energy Driving Conditions with Integrated Vehicle Dynamics and Neural-Network Subsystem Models

2009-04-20
2009-01-0860
In racetrack conditions, brake systems are subjected to extreme energy loads and energy load distributions. This can lead to very high friction surface temperatures, especially on the brake corner that operates, for a given track, with the most available traction and the highest energy loading. Individual brake corners can be stressed to the point of extreme fade and lining wear, and the resultant degradation in brake corner performance can affect the performance of the entire brake system, causing significant changes in pedal feel, brake balance, and brake lining life. It is therefore important in high performance brake system design to ensure favorable operating conditions for the selected brake corner components under the full range of conditions that the intended vehicle application will place them under. To address this task in an early design stage, it is helpful to use brake system modeling tools to analyze system performance.
Technical Paper

Using Triaxial Angular Rate Sensor and Accelerometer to Determine Spatial Orientation and Position in Impact Tests

2009-04-20
2009-01-0055
A data processing algorithm is presented for determining the spatial orientation and position of a rigid body in impact tests based on an instrumentation scheme consisting of a triaxial angular rate sensor and a trialaxial linear accelerometer. The algorithm adopts the unit quaternion as the main parameterized representation of the spatial orientation, and calculates its time history by solving an ordinary differential equation with the angular rate sensor reading as the input. Two supplemental representations, the Euler angles and the direction cosine matrix, are also used in this work, which provide an intuitive description of the orientation, and convenience in transforming the linear accelerometer output in the instrumentation frame to the global frame. The algorithm has been implemented as a computer program, and a set of example impact tests are included to demonstrate its application.
Journal Article

Prediction of Automotive Side Swing Door Closing Effort

2009-04-20
2009-01-0084
The door closing effort is a quality issue concerning both automobile designers and customers. This paper describes an Excel based mathematical model for predicting the side door closing effort in terms of the required minimum energy or velocity, to close the door from a small open position when the check-link ceases to function. A simplified but comprehensive model is developed which includes the cabin pressure (air bind), seal compression, door weight, latch effort, and hinge friction effects. The flexibility of the door and car body is ignored. Because the model simplification introduces errors, we calibrate it using measured data. Calibration is also necessary because some input parameters are difficult to obtain directly. In this work, we provide the option to calibrate the hinge model, the latch model, the seal compression model, and the air bind model. The door weight effect is geometrically exact, and does not need calibration.
Journal Article

Pneumatic Brake Apply System Response and Aero-Acoustic Performance Considerations

2008-04-14
2008-01-0821
Over the past decade, the automotive industry has seen a rapid decrease in product development cycle time and an ever increasing need by original equipment manufacturers and their suppliers to differentiate themselves in the marketplace. This differentiation is increasingly accomplished by introducing new technology while continually improving the performance of existing automotive systems. In the area of automotive brake system design, and, in particular, the brake apply subsystem, an increased focus has been placed on the development of electrohydraulic apply systems and brake-by-wire systems to replace traditional pneumatic and hydraulic systems. Nevertheless, the traditional brake apply systems, especially vacuum-based or pneumatic systems, will continue to represent the majority of brake apply system production volume into the foreseeable future, which underscores the need to improve the performance and application of these traditional systems in passenger cars and light-trucks.
X