Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

Chevrolet Sequel: Reinventing the Automobile

2008-04-14
2008-01-0421
Sequel is the third vehicle in GM's Reinvention of the Automobile and is the first zero emissions passenger vehicle to drive more than 300 miles on public roads without refueling or recharging. It is purpose-built around the hydrogen storage and fuel cell systems and uses the skateboard principle introduced in the Autonomy vision concept and the Hy-wire proof-of-concept vehicles. Sequel's aluminum structure, Flexray controlled chassis-by-wire systems and AWD system comprising a single front electric motor and two rear wheel motors make it, perhaps, the most technically advanced automobile ever built. The paper describes the vehicle's design and performance characteristics.
Journal Article

Development of the Combustion System for General Motors' 3.6L DOHC 4V V6 Engine with Direct Injection

2008-04-14
2008-01-0132
General Motors' 3.6L DOHC 4V V6 engine has been upgraded to provide substantial improvements in performance, fuel economy, and emissions for the 2008 model year Cadillac CTS and STS. The fundamental change was a switch from traditional manifold-port fuel injection (MPFI) to spark ignition direct injection (SIDI). Additional modifications include enhanced cylinder head and intake manifold air flow capacities, optimized camshaft profiles, and increased compression ratio. The SIDI fuel system presented the greatest opportunities for system development and optimization in order to maximize improvements in performance, fuel economy, and emissions. In particular, the injector flow rate, orifice geometry, and spray pattern were selected to provide the optimum balance of high power and torque, low fuel consumption, stable combustion, low smoke emissions, and robust tolerance to injector plugging.
Technical Paper

Stability Analysis of Solid Axle, Torque Arm Suspension Vehicles under Heavy Acceleration and Braking Events

2008-04-14
2008-01-1144
Power-hop is a self-excited and potential locally unstable torsional vibration of a vehicle's driveline, caused by stick and slip of the tire. It is especially prevalent in high-powered cars and trucks, under heavy acceleration. Torque arms have been used to reduce power-hop for many solid axle suspension vehicles, mostly trucks and old rear wheel drive sports cars. It has long been known that the shortest torque arm easily reduces power-hop, but will increase hop under braking (braking-hop). The fundamental mechanism of torque arm effects on solid axle suspension vehicles, however, has not yet been fully explained. This study explains the stability of solid axle, torque arm suspension vehicles under heavy acceleration and braking. Analytical techniques utilize conventional linear analysis and a non-linear coupling force in a 4 degree of freedom dynamic model.
Technical Paper

NVH Analysis of Balancer Chain Drives with the Compliant Sprocket of the Crankshaft with a Dual-Mass Flywheel for an Inline-4 Engine

2007-05-15
2007-01-2415
The work presented in this paper outlines the design and development of a compliant sprocket for balancer drives in an effort to reduce the noise levels related to chain-sprocket meshing. An experimental observation of a severe chain noise around a resonant engine speed with the Dual-Mass Flywheel (DMF) and standard build solid (fixed) balancer drive sprocket. Torsional oscillation at the crankshaft nose at full load is induced by uneven running of crankshaft with a dual-mass flywheel system. This results in an increase of the undesirable impact noise caused by the meshing between the chain-links and the engagement/disengagement regions of sprockets, and the clatter noise from the interaction between the vibrating chain and the guides. This paper evaluates and discusses the benefits that the compliant sprocket design provided. A multi-body dynamics system (MBS) model of the balancer chain drive has been developed, validated, and used to investigate the chain noise.
Technical Paper

On the Potential of Low Heat Rejection DI Diesel Engines to Reduce Tail-Pipe Emissions

2005-04-11
2005-01-0920
Heat transfer to the combustion chamber walls constitutes a significant portion of the overall energy losses over the working cycle of a direct injection (DI) diesel engine. In the last few decades, numerous research efforts have been devoted to investigating the prospects of boosting efficiency by insulating the combustion chamber. Relatively few studies have focused on the prospects of reducing emissions by applying combustion chamber insulation. A main purpose of this study is to assess the potential of reducing in-cylinder soot as well as boosting aftertreatment performance by means of partially insulating the combustion chamber. Based on the findings from a conceptual study, a Low Heat Rejection (LHR) design, featuring a Nimonic 80A insert into an Aluminum piston, was developed and tested experimentally at various loads in a single-cylinder Hatz-engine.
Technical Paper

Combustion Characteristics of a Spray-Guided Direct-Injection Stratified-Charge Engine with a High-Squish Piston

2005-04-11
2005-01-1937
This work describes an experimental investigation on the stratified combustion and engine-out emissions characteristics of a single-cylinder, spark-ignition, direct-injection, spray-guided engine employing an outward-opening injector, an optimized high-squish, bowled piston, and a variable swirl valve control. Experiments were performed using two different outward-opening injectors with 80° and 90° spray angles, each having a variable injector pintle-lift control allowing different rates of injection. The fuel consumption of the engine was found to improve with decreasing air-swirl motion, increasing spark-plug length, increasing spark energy, and decreasing effective rate of injection, but to be relatively insensitive to fuel-rail pressure in the range of 10-20 MPa. At optimal injection and ignition timings, no misfires were observed in 30,000 consecutive cycles.
Technical Paper

The Supercharged Northstar DOHC 4.4L V8 Engine for Cadillac

2005-04-11
2005-01-1854
A new high output supercharged Northstar DOHC 4.4L V8 engine has been developed for new “V” series Cadillac performance models. The new engine combines the highest power rating of any production Cadillac engine to date with operating refinement uncommon at this power level. The new engine incorporates a high capacity airflow system including a unique GM Powertrain (GMPT) patented supercharger. The design integrates the intake manifold and supercharger (SC) into a supercharger module (SCM) supplied with throttle body (TB) and intercoolers (IC). The new engine architecture is based on the naturally aspirated (NA) rear wheel drive (RWD) engine released in 2004, but has been specifically designed and upgraded from the NA version for the greater structural and thermal loads that result from supercharging.
Technical Paper

Optimization of the Stratified-Charge Regime of the Reverse-Tumble Wall-Controlled Gasoline Direct-Injection Engine

2004-03-08
2004-01-0037
An optimum combustion chamber was designed for a reverse-tumble wall-controlled gasoline direct-injection engine by systematically optimizing each design element of the combustion system. The optimization was based on fuel-economy, hydrocarbon, combustion-stability and smoke measurements at a 2000 rev/min test-point representation of road-load operating condition. The combustion-chamber design parameters that were optimized in this study included: piston-bowl depth, piston-bowl opening width, piston-bowl-volume ratio, exhaust-side squish height, bowl-lip draft angle, distance between spark-plug electrode and piston-bowl lip, spark-plug-electrode length, and injector spray-cone angle. No attempt was made to optimize the gross engine parameters such as bore and stroke or the intake system, since this study focused on optimizing a reverse-tumble wall-controlled gasoline direct-injection variant of an existing port-fueled injection engine.
Technical Paper

Development and Optimization of a Small-Displacement Spark-Ignition Direct-Injection Engine - Stratified Operation

2004-03-08
2004-01-0033
Superior fuel economy was achieved for a small-displacement spark-ignition direct-injection (SIDI) engine by optimizing the stratified combustion operation. The optimization was performed using computational analyses and subsequently testing the most promising configurations experimentally. The fuel economy savings are achieved by the use of a multihole injector with novel spray shape, which allows ultra-lean stratification for a wide range of part-load operating conditions without compromising smoke and hydrocarbon emissions. In this regard, a key challenge for wall-controlled SIDI engines is the minimization of wall wetting to prevent smoke, which may require advanced injection timings, while at the same time minimizing hydrocarbon emissions, which may require retarding injection and thereby preventing over-mixing of the fuel vapor.
Technical Paper

Development and Optimization of a Small-Displacement Spark-Ignition Direct-Injection Engine - Full-Load Operation

2004-03-08
2004-01-0034
Full-load operation of a small-displacement spark-ignition direct-injection (SIDI) engine was thoroughly investigated by means of computational analysis and engine measurements. The performance is affected by many different factors, which can be grouped as those pertaining to volumetric efficiency, to mixing and stratification, and to system issues, respectively. Volumetric efficiency is affected by flow losses, tuning and charge cooling. Charge cooling due to spray vaporization is often touted as the most significant benefit of direct-injection on full-load performance. However, if wall wetting occurs, this benefit may be completely negated or even reversed. The fuel-air mixing is strongly affected by the injection timing and characteristics at lower engine speeds, while at higher engine speeds the intake flow dominates the transport of fuel particles and resultant vapor distribution. A higher injector flow rate enhances mixing especially at higher engine speeds.
Technical Paper

Vibration Modeling and Correlation of Driveline Boom for TFWD/AWD Crossover Vehicles

2003-05-05
2003-01-1495
Reducing the high cost of hardware testing with analytical methods has been highly accelerated in the automotive industry. This paper discusses an analytical model to simulate the driveline boom test for the transverse engine with all wheel drive configuration on a front-wheel drive base (TFWD/AWD). Driveline boom caused by engine firing frequency that excites the bending mode of the propeller shaft becomes a noise and vibration issue for the design of TFWD/AWD driveline. The major source of vibrations and noise under the investigation in this paper is the dominant 3rd order engine torque pulse disturbance that excites the bending of the propeller shaft, the bending of the powertrain and possible the bending of the rear halfshaft. All other excitation sources in this powertrain for a 60° V6 engine with a pushrod type valvetrain are assessed and NVH issues are also considered in this transient dynamic model.
Technical Paper

Roll-Down Process Development for Transmission Garage Shift Quality

2001-04-30
2001-01-1500
A roll down methodology has been developed to predict the driver's seat track fore-aft acceleration response using measured half shaft torque time histories and an analytically predicted vehicle sensitivity function suitable for transverse front wheel drive powertrains. The predicted vehicle sensitivity function (a frequency response function) relates the transmission torque applied to the drive axles to the seat track fore-aft acceleration. An experimental procedure was developed to measure the in-situ vehicle sensitivity function. The experimental data was used to correlate the analytical model. The testing results have shown that in the frequency range of the “garage shift” that the vehicle body can be represented as a rigid body. A Nastran model utilizing a rigid body representation of the body and powertrain is used to predict the vehicle response to the torque transient.
Technical Paper

Integrating Test and Analytical Methods for the Quantification and Identification of Manual Transmission Driveline Clunk

2001-04-30
2001-01-1502
Driveline clunk is a phenomenon that can adversely affect customer perception of vehicle quality. Clunk is created by the impact of two driveline components as they oscillate in response to a torque disturbance in the driveline system. This disturbance is typically initiated by a driver controlled engine torque variation, most severely through a throttle or clutch manipulation. This torque variation excites a torsional response from the driveline, manifested by a variety of mechanisms such as resonances of various shafts, housings and axles, clutch oscillations, and gear impacts. Because automotive drivelines are complex systems composed of many rotating components, difficulty arises in identifying the impacts that cause clunk and evaluating the significant parameters that can positively affect these collisions. This paper will describe the application of analysis and test methods in the investigation of clunk in a rear wheel drive, manual transmission vehicle.
Technical Paper

Design and Fabrication of an Aluminum Engine Cradle for a General Motors Vehicle

1999-03-01
1999-01-0659
Automotive manufacturers have intensified their efforts to increase vehicle fuel economy by reducing weight without sacrificing vehicle size and comfort. Vehicle areas that offer the potential to reduce weight include chassis structural components. A cradle or a subframe is a chassis structural component that is utilized to support the engine/powertrain in front wheel drive vehicles. Traditionally, engine cradles have been manufactured by using stamped steel weldments. Recently, automotive designers are considering alternative processes, i.e., hydro-forming, as well as fabricating engine cradles using lightweight materials. The objective of this paper is to describe the development of an aluminum engine cradle for a General Motors's midsize vehicle. The design criteria and structural performance requirements for this cradle are presented along with an overview of the manufacturing processes used to produce this lightweight structural part.
X