Refine Your Search

Topic

Author

Search Results

Technical Paper

Methodology for virtual analysis of dynamic behavior for tubes and flexible hoses associated with suspension kinematics

2024-01-08
2023-36-0009
Nowadays the automotive market is reducing product development time and launching more technological vehicles, always focusing on having even more safety with better customer experience which generates big competitiveness and requires more accurate and faster development, the virtual simulations make it possible to meet this new reality with a high confidence level. This work comprises the validation of a methodology to analyze the design confidence level for flexibles associated with suspension kinematics. To validate the methodology, the scanned physical model was compared with the virtual simulations using the Simcenter 3D Flexible Pipe software. As inputs data for simulation, it is used geometrical, physical, and chemical information. Through the suspension kinematics study was establish possible movement situations to obtain the flexibles deformations attending to all suspension positions.
Technical Paper

Methodology for Virtual Analysis of the Dynamic Behavior of Parking Brake Cable Attached to Leaf Spring Suspension

2017-11-07
2017-36-0128
Through computational dynamic simulations is possible to achieve high reliability index in the development of automotive components, thus reducing the time and component cost can generate significant levels of competitiveness and quality. This work suggests the validation of a methodology for simulation, able to predict and quantify the best design of the parking brake cable that although it is flexible, has in its structure composite elements of different mechanical properties. Known difficulty of mathematically predict nonlinear relationships deformation under forces and moments effect was first established, studies based on experimental measurements serve as input parameters for simulating the dynamic behavior of the flexible cable. With the aid of motion making use of NX9 CAD software, it was prepared the dynamic movement that the leaf spring suspension system does.
Technical Paper

Vibration Absorber Application, Case Study: Mid-Size Truck Steering Wheel Vibration

2017-11-07
2017-36-0125
In this paper an alternative engineering solution to control vehicle steering wheel vibration is presented. The strategy is focused on the implementation of an effective tuned vibration absorber which also complies with time frame and costs requisites. The vibration levels in this case study are enhanced due resonances in the chassis frame and steering column. The tuned mass damper is basically a suspended mass attached on a vulcanized rubber body, aiming for the customer benefits; this solution can be classified as low cost as well low complexity for implementation. In this case study, a mid-size truck was used as a physical hardware and the data were collected through accelerometers on the steering wheel and other critical components. As a control factor, different tunings on different parts were applied to optimize the auxiliary system performance and robustness.
Technical Paper

Materials Selection for Biodiesel Application Wiring Harness Insulation Materials Testing

2017-11-07
2017-36-0159
The development of fuel systems components are becoming challenging with the increasing use of Biofuels like Biodiesels and Ethanol around the world. Biodiesels are one of the most challenging fuels, once they can have multiple sources, which influences its characteristics, mainly the oxidization stability and peroxide levels. As the fuel characteristics changes along the time, the correct materials selection during the development phase is very important for the fuel system performance during the vehicle lifetime. One of the components most affected by the Biodiesel is the in tank fuel pump system. During the vehicle lifetime, it is exposed to all sorts of fuel and its contaminants and exposed to system stress factors like temperature and voltage variation. The wires insulation in the fuel pump systems are one of the most affected components.
Technical Paper

Influence of Spot Welding Parameters on Al-Si Coated 22MnB5 for Automotive Application

2017-11-07
2017-36-0225
The application of press hardening steels (PHS) Al-Si coating has been increasing in body in white vehicles as an approach to meet the demands of safety and CO2 reduction regulations. The vehicle structures with PHS largely depend on the integrity and the mechanical performance of the spots weld. During the spot welding process, intermetallic phase may appear in function of the chemical composition of the steel and coating. One of these intermetallics is the Fe-Al phase which brittleness decreases the strength of the weld joint. In this study, resistance spot welding (RSW) experiments were performed in order to evaluate the influence of the welding parameters of single-lap joints PHS - 22MnB5 steel grade.
Technical Paper

Brake Flexible Dynamic Analysis Attached to McPherson Suspension, Optimizing the Input Parameters in IPS Cable Simulation

2016-10-25
2016-36-0157
The high level of reliability of virtual analysis for suspension system development should not be thinking only for comfort and performance purpose, considering the `growing number of failures due to the touch between components in dynamic condition. The study establishes a simple and optimized methodology, able to predict more accurately the flexible brake hose path subject to the steering motion and associates with the independent suspension course, aiming the best route in order to achieve a low cost and robust design. In turn, the flexible brake hose non-linear model invalidates the multibody study to get the best route. However, with the aid of motion making use of NX9 [1] CAD [2] software was prepared dynamic movement that subjects front independent suspension system that establishes a Cartesian routine that maps 977 points, much higher than 9 points from previous studies, comprising a more accurate path performed by the hose.
Technical Paper

Passenger Vehicle Driver's Lower Limbs Ergonomics through the Development of Biomechanical Models

2015-09-22
2015-36-0205
Vehicle ergonomics, more specifically driver ergonomics, has been the subject of interest in the automotive industry as a way to provide customers vehicles that have more than modern project, efficiency and competitive price. The driver ergonomics is related to the way the driver interacts with the vehicle interior, particularly, with the seat, hand and foot controls, considering aspects such as ease of access, space, proper upper and lower limb motion and drivers comfort and fatigue. Regarding the lower limbs, the driver’s comfort can be evaluated in terms of joint moments and muscle forces, which are influenced by the hip, knee and ankle joint angles, which in turn depend on the distances between the seat and pedal. Variations in seat to pedal horizontal or vertical distances will result in different angular positions and, consequently, different joint moments and muscle forces, which are associated to greater or lower muscular activations and greater or lower driver’s fatigue.
Technical Paper

Acoustic Development Differences Between Theoretical And Experimental Process for Automotive Exhaust System

2015-09-22
2015-36-0277
Acoustics, in a broad sense, is an essential product attribute in the automotive industry, therefore, it is relevant to study and compare theoretical and numerical predictions to experimental acoustic measurements, key elements of many acoustic development processes. The numerical methods used in the industry for acoustic predictions are widely used for exhaust system optimization. However, the numerical and theoretical predictions very often differ from experimental results, due to modeling simplifications, temperature variations (which have high influence on speed of sound), manufacturing variations in prototype parts among others. This article aims to demonstrate the relevant steps for acoustics development applied in automotive exhaust systems and present a comparative study between experimental tests and computer simulations results for each process. The exhaust system chosen for this development was intended for a popular car 4-cylinder 1.0-liter engine.
Technical Paper

Study of Geometric Parameters for Validation and Reduction Effort in Steering System of a Vehicle FSAE

2015-09-22
2015-36-0147
This paper explores the method of modeling and validation the computational tools able to accurately replicate the dynamic behavior of a Formula SAE vehicle. Based on limitations in conducting physical tests, it is possible to mathematically predict the forces and momentum generated on the steering column of the vehicle, minimizing effort and improving driver comfort even before the component physically manufactured. The results in permanent state due technical instrumentations were used in the physical vehicles and compared with other proposals (skid Pad test). As the software simulating the same path, it was possible to adopt values of speed and wheel steering, allowing compare the dynamics of the vehicle, through the signals from other sensors installed in the data acquisition system, validating the behavior of the models presented in permanent state. Other aspects were studied to understand vehicle behavior concerning lateral stability and steering behavior.
Technical Paper

Dual Function Gasket Design

2014-09-30
2014-36-0116
Vehicular manual transmissions systems often use a vent or breather to allow pressure control inside the main structure. This pressure variation comes along with differences caused by working temperature range. However along with air flow these vents may occasionally allow oil passage noticed by vehicle owner as a transmission leakage event. The more sophisticated the more expensive is the venting device which may contain membranes, labyrinths, baffles and other solutions to avoid leakage. The purpose of this paper is to present a simplified solution to avoid transmission fluid leakage by combining a regular sealing device (fiber concept gasket) and a baffle to avoid oil splash to reach the venting device. The proposed concept took into consideration a quick implementation aspect, low financial impact and less complexity to the overall current system modifying an existing component by adding secondary function instead of creating additional components.
Technical Paper

Wheels and Tires Assembling Case Study

2014-09-30
2014-36-0253
This paper makes an analysis of problems encountered in assembling components from automotive vehicles. It shows wheel and tires assembling cases of an automaker that applies lean manufacturing concepts in the production process. This study not only makes the analysis from the best way to apply the methodology to seek for the root cause, but also uses methodology to identify containment measures, defining robust solutions capable of preventing the incidence of similar problems. This methodology can be applied to solving problems of any production process, even outside of the automotive industry
Technical Paper

Development of a Lightweight Fixed Steering Column Applying DFSS Methodology

2014-09-30
2014-36-0103
Over recent years, demands for fuel-efficient vehicles have increased with the rise of the fuel price and public concerns on environment. Recently, application of lightweight materials is increasing in the automobile industry in order to improve mass reduction and consequently fuel efficiency. On this particular study, with a goal of developing a Lightweight Fixed Steering Column, it was identified an opportunity to replace fixed steering column metallic upper and lower brackets by polymeric material. In order to fulfill NVH, Crash, Durability and Performance requirements, a DFSS methodology has been applied. As a result, It was achieved ∼51% of mass reduction, ∼10% of performance improvement with ∼14% of cost increase.
Technical Paper

Front of Dash Pass-Through Design Optimization

2014-09-30
2014-36-0219
Product Design is a process of creating new product by an organization or business entity for its customer. Being part of a stage in a product life cycle, it is very important that the highest level of effort is being put in the stage. The Design for Six Sigma (DFSS) methodology consists of a collection of tools, needs-gathering, engineering, statistical methods, and best practices that find use in product development. DFSS has the objective of determining the needs of customers and the business, and driving those needs into the product solution so created. In this paper the DFSS methodology is employed to develop the optimal solution to enhance sound transmission loss in a vehicle front of dash pass-through. An integrated approach using acoustic holography and beamforming Noise Source Identification (NSI) techniques is presented as a manner to improve sound insulation during vehicle development.
Technical Paper

Blanks Physical Parameters Optimization for Automotive Panels Deep Drawing

2013-10-07
2013-36-0204
This work conducted an optimization in sheet metal blank's sizes for cold pressing automotive parts, comparing dimensional characteristics of automotive hood outer panels deep drawn with commonly used blank sizes for this process. As a result, it was possible to suggest modifications to smaller blank sizes, accordingly to the improvement accomplished in this work. The experimental study was conducted from observations in part's superficial aspects after its deep drawing process, which was realized in a commonly used tooling for automotive industry, with a blank's width reduction for the suggested case. The results showed a cost reduction opportunity based in this optimization.
Technical Paper

The Use of Piezoelectric Resonators to Enhance Sound Insulation in a Vehicle Panel

2012-11-25
2012-36-0613
The control of noise and vibrations using conventional damping materials is typically associated to mass penalties in a vehicle. A lightweight alternative employs piezoceramic materials connected in series to a resistor and an inductor (R-L circuit) to perform as mechanical vibration absorber, called piezoelectric resonator. In this paper, piezoelectric resonators are designed to attenuate vibration in a vehicle panel. The choice of design parameters, such as correct placement for the piezoelectric patches and the optimal electrical circuit values, is assisted by Finite Element simulation (FE) and theoretical analysis. Measurements of Sound Transmission Loss (STL) and modal analyses are conducted to demonstrate the efficiency of the proposed technique when compared to a conventional damping material.
Technical Paper

Springback: How to Improve its Early Prediction Instead of Late Stamping Dies Rework

2012-10-02
2012-36-0373
The globalization, rivalry and the technologies have changed the auto industry in a battlefield, where companies are fighting for quality, reliability, the reduction of development cycle and also cost. The manufacturing process of car body is the major responsible for time consumption, labor and investment. One of the bottleneck solutions is to use computational simulations during design phase in order to minimize the reworks. The car body is composed by several stamped parts, and its design requires a series of parallel activities, and one of the fundamental information is the accurate magnitude of spring back distortions, but due to the complexity of the phenomenon, the results are not so accurate as desired. The explored literatures are recommending numeric methods to simulate material's behavior and also the spring back phenomenon.
Technical Paper

Treatment of End of Life Vehicles in Brazil: Challenges and Opportunities

2012-10-02
2012-36-0217
Style changes and technological advances have led to reduced service life of current products as automobiles. These are among the goods that are constantly re-designed to meet our growing needs for improved products. However, these demands for new products and more modern has meant a great cost to our natural resources, such as excessive use of raw materials, water and energy during production, use and end of life cycle of these assets. The increasing scarcity of land available for the proper disposal of waste in landfills, in addition to the high cost of implementing these areas and the increasing distances to urban centers imply the need to reduce solid waste generation, including here the automotive. The growth of the automotive market has created a serious problem due to the disposal of urban waste volumes generated, the great diversity of materials involved and their toxicity.
Technical Paper

Evaluation of Aluminum Wheels with Focus on Specification Materials and Manufacturing

2011-10-04
2011-36-0267
The growing need to avoid failures in vehicle components have become the methods of quality control of manufacturing processes more efficient and accurate, especially in safety components like automotive wheels. The aim of this work is examines the efficiency of aluminum-silicon specifications related to wheel quality for avoiding the poor results obtained in impact and fatigue tests as result of improper settings in the chemical composition and manufacture process. It is evaluated mainly the content of magnesium in aluminum alloys and certified the correct degree of silicon modification in the microstructure on the performance of these wheels. The test results indicate that even with the chemical composition parameters specified by the standard, the technical validation of the product may not be adequate.
Technical Paper

Brand New Technology: Chromed Plate Appearance Painting with Potential Use in Internal and External Automotive Parts

2011-10-04
2011-36-0210
The automotive industry is spending a huge amount of money searching for new technologies, focused on cost reduction of product and/or process, quality improvements and nowadays aiming for environmental improvements. This paper shows a new technology applied to the automotive industry and a new development of production process of painting with chromed plate appearance. Chromed plate is a traditional electrolytically deposited chromium coating on the first surface of plastic components used in several automotive parts to improve the vehicle jewel effect, more often to differentiate luxury levels into a vehicle platform (in this case for top level vehicles), but with some dramatically important issues, such as: process scraps, part costs and heavy metals in their composition. This new technology is environmentally friendly chrome appearance (water-based without heavy metals), and has reduced costs, compared with the traditional process of chroming.
Technical Paper

Development of an Electrical Power Steering for Emergent Markets

2010-10-06
2010-36-0243
Development of an Electrical Power Steering (EPS) system for Emergent Markets, with emphasis on improved fuel economy and cost advantages to the customer. The EPS for Emergent Markets provides high steering wheel assistance on parking maneuvers and appropriate assistance on driving conditions similar to conventional EPS systems. The assistance levels decreases while vehicle speed increases providing better steering feel at high speed conditions (highway tracks). It also provides good tuning capability balanced with piece cost. In addition, this EPS enables an aftermarket bolt-on system for non-assisted steering vehicles (i.e., manual steering vehicles).
X