Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Influence of Spot Welding Parameters on Al-Si Coated 22MnB5 for Automotive Application

2017-11-07
2017-36-0225
The application of press hardening steels (PHS) Al-Si coating has been increasing in body in white vehicles as an approach to meet the demands of safety and CO2 reduction regulations. The vehicle structures with PHS largely depend on the integrity and the mechanical performance of the spots weld. During the spot welding process, intermetallic phase may appear in function of the chemical composition of the steel and coating. One of these intermetallics is the Fe-Al phase which brittleness decreases the strength of the weld joint. In this study, resistance spot welding (RSW) experiments were performed in order to evaluate the influence of the welding parameters of single-lap joints PHS - 22MnB5 steel grade.
Technical Paper

Technical Assessment of an Automotive System through the Methodology of Engineering Value / Analysis Value

2016-10-25
2016-36-0327
In the current automotive industry, in an increasingly challenging environment due to strong competition, to develop a product that performs its functions objectively, with quality and mainly with the lowest possible cost, these are the keys to conquer competitive advantage. This paper is intended to explore cost reduction of an automotive system by using the techniques of the methodology EV / AV (Engineering Value / Analysis Value). The analysis are framed as exploratory, in the form of study, with ratings of the components and their functions, followed by the generation of ideas with the completion of an indication of a great potential for a product development with optimized cost.
Technical Paper

Vehicle Interior Noise Reduction Using Innovative Roof Trim Structure

2014-11-04
2014-36-0767
It is known acoustic comfort is a key feature to meet customer expectations for many products. In the current automotive industry, vehicle interior quietness is seen as one of the most important product attributes regarding perceived quality. A quiet interior can be achieved through an appropriate balance of noise sources levels and acoustic materials. However, the choice of the most efficient acoustic content may be challenging under severe cost and mass restraints commonly found in emerging market vehicles. Therefore, it is fundamental to develop efficient materials which will provide high acoustic performance with lower weight and cost. In this paper the fine tuning of the headliner structure is presented as an efficient way to increase acoustic performance. Structures currently employed for this vehicle subsystem are described. Airflow resistance and sound absorption measurements are used to guide development and make precise manufacturing process changes.
Technical Paper

Dual Function Gasket Design

2014-09-30
2014-36-0116
Vehicular manual transmissions systems often use a vent or breather to allow pressure control inside the main structure. This pressure variation comes along with differences caused by working temperature range. However along with air flow these vents may occasionally allow oil passage noticed by vehicle owner as a transmission leakage event. The more sophisticated the more expensive is the venting device which may contain membranes, labyrinths, baffles and other solutions to avoid leakage. The purpose of this paper is to present a simplified solution to avoid transmission fluid leakage by combining a regular sealing device (fiber concept gasket) and a baffle to avoid oil splash to reach the venting device. The proposed concept took into consideration a quick implementation aspect, low financial impact and less complexity to the overall current system modifying an existing component by adding secondary function instead of creating additional components.
Technical Paper

Blanks Physical Parameters Optimization for Automotive Panels Deep Drawing

2013-10-07
2013-36-0204
This work conducted an optimization in sheet metal blank's sizes for cold pressing automotive parts, comparing dimensional characteristics of automotive hood outer panels deep drawn with commonly used blank sizes for this process. As a result, it was possible to suggest modifications to smaller blank sizes, accordingly to the improvement accomplished in this work. The experimental study was conducted from observations in part's superficial aspects after its deep drawing process, which was realized in a commonly used tooling for automotive industry, with a blank's width reduction for the suggested case. The results showed a cost reduction opportunity based in this optimization.
Technical Paper

Evaluation of Aluminum Wheels with Focus on Specification Materials and Manufacturing

2011-10-04
2011-36-0267
The growing need to avoid failures in vehicle components have become the methods of quality control of manufacturing processes more efficient and accurate, especially in safety components like automotive wheels. The aim of this work is examines the efficiency of aluminum-silicon specifications related to wheel quality for avoiding the poor results obtained in impact and fatigue tests as result of improper settings in the chemical composition and manufacture process. It is evaluated mainly the content of magnesium in aluminum alloys and certified the correct degree of silicon modification in the microstructure on the performance of these wheels. The test results indicate that even with the chemical composition parameters specified by the standard, the technical validation of the product may not be adequate.
Technical Paper

Computational method to assess the SUV drivers' dynamics due to rollover crashes

2010-10-06
2010-36-0223
Even though the rollover is not the most frequent type of accident, it is of the greatest significance with respect to injury and trauma caused to the vehicle occupants. The need to reduce death incidence and serious injuries has increased the importance of computational simulations and prototype testing. This study presents finite element model to simulate rollover events and to predict possible injuries caused in the head, neck, thorax and cervical spine. Numerical models of a sport utility vehicle (SUV) are simulated including anthropomorphic dummy to represent the driver. The injury risks and traumas are verified to the driver considering belted and unbelted dummies. The computational methodology developed proved to be efficient for the evaluation of the vehicle's roof structure in rollover events.
Technical Paper

ISO Headform Pedestrian Protection test results comparison at critical bonnet regions

2010-10-06
2010-36-0236
Test Protocols for pedestrian head protection in a car pedestrian accident have been discussed for several Technical Communities in order to identify ideal boundary test conditions to evaluate injury limits. With the purpose to harmonize with final Global Technical Regulation 9 for Pedestrian Protection published by ECE in January 2009, European New Car Assessment Program (ENCAP) has changed their Child and Adult headform weight and geometry boundary test conditions. However 5 Kph remains as difference between both protocols. This work presents a comparative head impact test analysis for both headform at ENCAP and GTR#9 boundary test conditions when performed at critical bonnet regions.
Technical Paper

Control of Airborne Road Noise Using Sealers

2010-10-06
2010-36-0458
Noise generated during tire/road interaction has significant impact on the acoustic comfort of a vehicle. One of the most common approaches to attenuate road noise levels consists on the addition of mass treatments to the vehicle panels. However, the acoustic performance of sealing elements is also relevant and has an important contribution to the noise transmission into the vehicle interior. In this paper the correct balance between the mass added to treat vehicle panels and sealing content is investigated. The procedure to quantify the critical road noise transmission paths consists of recording interior noise levels as applied treatment is removed from potential weak areas, such as wheelhouses, floor, doors and body pillars. It is observed that the noise propagation through body pillars has a direct influence on road noise levels.
Technical Paper

Computational Methodologies for Vehicles Roof Strength Assessment to Prevent Occupants Injury in Rollover Crashes

2009-10-06
2009-36-0267
Among all types of vehicle crashes, rollover is the most complex and yet least understood. During the last decades, a constant increase in the studies involving rollover crashes and injuries associated with it can be observed. Although the rollover is not the most frequent type of accident, it is of the greatest significance with respect to injury and trauma caused to the vehicle occupants. The existing standards and procedures to test rollover crashworthiness are still not suitable to computer simulation because of the huge computational effort required, and the need of faithful/overly complex representation of the aspects involved in real crashes. The objective of the present work is the development of computational models particularly adapted to simulate different standards and procedures used to evaluate the vehicles' roof strength. The models are compared with other approaches, and their advantages/disadvantages are discussed.
Technical Paper

A Statistical Energy Analysis of Lightweight Materials for Engine Noise Control

2009-10-06
2009-36-0251
In the last decades, there has been an increasing demand for vehicle noise control and, at the same time, fuel economy has become critical for the automotive industry. Therefore, a precise balance between performance and mass of sound package components is essential. In this work the original dash insulation system of an automotive vehicle was replaced by a lightweight alternative. The methodology of Statistical Energy Analysis (SEA) was employed to design multilayered fibrous constructions for engine noise control. The results were verified through experimental testing and supported the achievement of vehicle requirements regarding comfort, weight and environment.
Technical Paper

Influence of residual stresses in aluminum wheel design

2008-10-07
2008-36-0139
The current study shows important results obtained by a new technique of residual stress virtual evaluation in automotive components for improving the development and quality of new products, aiming the structural performance, mass and cost reductions. The approaching those virtual results were adjusted by metallurgic data obtained in metallography, mechanical and chemical analysis. As part of this proposal, an automotive aluminum wheel belong to current production was evaluated in accordance with data acquired in the wheel manufacturing process. It was taking in account the real information of casting process parameters and the metallurgic information obtained in laboratorial tests. In this work, the results show that product residual stresses shall be considerate and evaluated during design phases as improving proposal, new technical concerns and quality improving.
Technical Paper

A case-study about side door closing effort

2008-10-07
2008-36-0154
Door Closing Effort is one of the first impressions a potential customer has about a vehicle. The energy someone needs to give out to push and lock a side door vehicle is easily felt and can enhance the impression of a robust and high quality design vehicle. In other words, Door Closing Effort is one of the issues manufacturers shall look over in order to achieve perfect levels of Human Vehicle Integration (HVI). The aim of this paper is to present a case study of Side Door Closing Effort of a specific Hummer vehicle. It will be shown how door closing effort varies according to several parameters, and how to improve the design and/or production process in view of achieving better effort levels, considering the Hummer case as a background. Several variables that influence on the overall energy of this process have been evaluated, and the physical differences were weighted to demonstrate what really counts for reaching a comfortable level of Door Closing Effort.
Technical Paper

A Case Study About Side Door Closing Sound Quality

2008-03-30
2008-36-0590
Side Door Closing Sound Quality is one of the first impressions a potential customer has about a vehicle. It can enhance an impression of robust and high quality vehicle. This paper is a study of Side Door Closing Sound of a specific vehicle model. The main objective is to understand how Door Closing Sound Quality varies over several vehicles samples and how to improve the design and/or production process in order to achieve better Sound Quality. Two vehicles (same model) with distinct performance have been chosen among several samples. Both have been evaluated and the physical differences are weighted to realize what really matter for Door Closing Sound Quality.
Technical Paper

Camshaft Hardened by Remelting Process - A New Alternative for Usage Combined with Roller Finger Follower

2004-11-16
2004-01-3287
The current study has the proposal to approach the differences in dynamic behavior between camshaft manufactured in the traditional gray cast iron and an alloyed gray cast iron with the improvement on mechanical properties in order to stresses found on roller finger follower applied systems. The main objective of this paper is to show that camshaft made of modified gray cast iron and heat treated through the remelting process is still a good solution for application with roller finger followers systems which requires higher wear resistance standards. The proposed experimental study consists of comparative analysis of microstructure and hardness, dynamometers tests, dimensional measurements of camshafts, and after that, intends to show the higher performance of this manufacturing process in more severe applications of internal combustion engines.
Technical Paper

Powder Metallurgy Application in Automotive Components - Valve Seat Inserts

2001-03-05
2001-01-3953
This work presents aspects related to research and development of high-speed steels for valve seat inserts application. Five series of materials were evaluated: high speed steel M3/2 infiltrated with copper during sintering; high speed steel M3/2 with Cu3P addition; high speed steel M3/2 with Cu3P addition and further copper infiltrated during sintering; high speed steel M3/2 mixed with iron powder; high speed steel M3/2 mixed with iron powder and niobium carbide. The physical and mechanical properties of the evaluated high-speed steels are presented in terms of densification, hardness, and radial mechanical strength. These properties are compared according to the materials processing and heat treatment.
X