Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Vibration Absorber Application, Case Study: Mid-Size Truck Steering Wheel Vibration

2017-11-07
2017-36-0125
In this paper an alternative engineering solution to control vehicle steering wheel vibration is presented. The strategy is focused on the implementation of an effective tuned vibration absorber which also complies with time frame and costs requisites. The vibration levels in this case study are enhanced due resonances in the chassis frame and steering column. The tuned mass damper is basically a suspended mass attached on a vulcanized rubber body, aiming for the customer benefits; this solution can be classified as low cost as well low complexity for implementation. In this case study, a mid-size truck was used as a physical hardware and the data were collected through accelerometers on the steering wheel and other critical components. As a control factor, different tunings on different parts were applied to optimize the auxiliary system performance and robustness.
Technical Paper

Using Spherical Beamforming to Evaluate Wind Noise Paths

2014-11-04
2014-36-0791
Microphone array based techniques have a growing range of applications in the vehicle development process. This paper evaluates the use of Spherical Beamforming (SB) to investigate the transmission of wind-generated noise into the passenger cabin, as one of the alternative ways to perform in-vehicle troubleshooting and design optimization. On track measurements at dominant wind noise conditions are taken with the spherical microphone array positioned at the front passenger head location. Experimental diligence and careful processing necessary to enable concise conclusions are briefly described. The application of Spherical Harmonics Angularly Resolved Pressure (SHARP) and the Filter-And-Sum (FAS) algorithms is compared. Data analysis variables, run-to-run repeatability and system capability to identify design modifications are studied.
Technical Paper

The Use of Piezoelectric Resonators to Enhance Sound Insulation in a Vehicle Panel

2012-11-25
2012-36-0613
The control of noise and vibrations using conventional damping materials is typically associated to mass penalties in a vehicle. A lightweight alternative employs piezoceramic materials connected in series to a resistor and an inductor (R-L circuit) to perform as mechanical vibration absorber, called piezoelectric resonator. In this paper, piezoelectric resonators are designed to attenuate vibration in a vehicle panel. The choice of design parameters, such as correct placement for the piezoelectric patches and the optimal electrical circuit values, is assisted by Finite Element simulation (FE) and theoretical analysis. Measurements of Sound Transmission Loss (STL) and modal analyses are conducted to demonstrate the efficiency of the proposed technique when compared to a conventional damping material.
Technical Paper

Control of Airborne Road Noise Using Sealers

2010-10-06
2010-36-0458
Noise generated during tire/road interaction has significant impact on the acoustic comfort of a vehicle. One of the most common approaches to attenuate road noise levels consists on the addition of mass treatments to the vehicle panels. However, the acoustic performance of sealing elements is also relevant and has an important contribution to the noise transmission into the vehicle interior. In this paper the correct balance between the mass added to treat vehicle panels and sealing content is investigated. The procedure to quantify the critical road noise transmission paths consists of recording interior noise levels as applied treatment is removed from potential weak areas, such as wheelhouses, floor, doors and body pillars. It is observed that the noise propagation through body pillars has a direct influence on road noise levels.
X