Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Garage Shift Calibration for Automatic Transmission in Front Wheel Drive Powertrains

2015-09-22
2015-36-0331
In order to illustrate the constant development of the automatic transmission controls area, this paper describes how the garage shift calibration works in vehicles with transverse front wheel drive powertrains. A garage shift (GS) is the turbine speed transient commanded by the shift lever movement from Park to Drive or Reverse, from Neutral to Drive or Reverse, from Drive to Reverse, from Reverse to Drive, or from Drive or Reverse to Neutral [1]. A usual metric to verify the garage shift comfort is the data acquisition of the fore-aft acceleration on the seat track, but also the shift time should be considered, as well as the clutch energy and the repeatability of the shift feeling for different temperatures and engine idle speed levels. This paper demonstrates the transmission calibration strategies to determine a sensitive and a non-sensitive garage shift and its interactions with the engine calibration.
Technical Paper

Acoustic Development Differences Between Theoretical And Experimental Process for Automotive Exhaust System

2015-09-22
2015-36-0277
Acoustics, in a broad sense, is an essential product attribute in the automotive industry, therefore, it is relevant to study and compare theoretical and numerical predictions to experimental acoustic measurements, key elements of many acoustic development processes. The numerical methods used in the industry for acoustic predictions are widely used for exhaust system optimization. However, the numerical and theoretical predictions very often differ from experimental results, due to modeling simplifications, temperature variations (which have high influence on speed of sound), manufacturing variations in prototype parts among others. This article aims to demonstrate the relevant steps for acoustics development applied in automotive exhaust systems and present a comparative study between experimental tests and computer simulations results for each process. The exhaust system chosen for this development was intended for a popular car 4-cylinder 1.0-liter engine.
Technical Paper

Treatment of End of Life Vehicles in Brazil: Challenges and Opportunities

2012-10-02
2012-36-0217
Style changes and technological advances have led to reduced service life of current products as automobiles. These are among the goods that are constantly re-designed to meet our growing needs for improved products. However, these demands for new products and more modern has meant a great cost to our natural resources, such as excessive use of raw materials, water and energy during production, use and end of life cycle of these assets. The increasing scarcity of land available for the proper disposal of waste in landfills, in addition to the high cost of implementing these areas and the increasing distances to urban centers imply the need to reduce solid waste generation, including here the automotive. The growth of the automotive market has created a serious problem due to the disposal of urban waste volumes generated, the great diversity of materials involved and their toxicity.
Technical Paper

Evaluation of Aluminum Wheels with Focus on Specification Materials and Manufacturing

2011-10-04
2011-36-0267
The growing need to avoid failures in vehicle components have become the methods of quality control of manufacturing processes more efficient and accurate, especially in safety components like automotive wheels. The aim of this work is examines the efficiency of aluminum-silicon specifications related to wheel quality for avoiding the poor results obtained in impact and fatigue tests as result of improper settings in the chemical composition and manufacture process. It is evaluated mainly the content of magnesium in aluminum alloys and certified the correct degree of silicon modification in the microstructure on the performance of these wheels. The test results indicate that even with the chemical composition parameters specified by the standard, the technical validation of the product may not be adequate.
Technical Paper

Virtual Simulating of Residual Stresses in Aluminum Wheel Designs

2009-04-20
2009-01-0417
The current study shows interesting results obtained by a new virtual approaching for evaluating the final stresses presented in automotive components during its application in vehicle which suggests product engineers a new tool for measuring the residual stresses in casting. As part of this proposal, an automotive as-cast aluminum wheel belong to current production was evaluated in accordance with data acquired in its manufacturing process. At that step, it was taking into account the real information of casting process parameters and the metallurgic results obtained in laboratorial tests such as, metallographic, chemical and mechanical tests. FEA (Finite Element Analysis) on simulation of wheel loading stress was made regarding those preliminary data obtained in CRSFEA simulation (cast residual stress finite element analysis) as entered parameters.
Technical Paper

Influence of residual stresses in aluminum wheel design

2008-10-07
2008-36-0139
The current study shows important results obtained by a new technique of residual stress virtual evaluation in automotive components for improving the development and quality of new products, aiming the structural performance, mass and cost reductions. The approaching those virtual results were adjusted by metallurgic data obtained in metallography, mechanical and chemical analysis. As part of this proposal, an automotive aluminum wheel belong to current production was evaluated in accordance with data acquired in the wheel manufacturing process. It was taking in account the real information of casting process parameters and the metallurgic information obtained in laboratorial tests. In this work, the results show that product residual stresses shall be considerate and evaluated during design phases as improving proposal, new technical concerns and quality improving.
Technical Paper

OVERVIEW OF AUTOMOTIVE COMPONENT FAILURES

2000-12-01
2000-01-3231
The present work gives an overview of the current situation of failures that may occur in automotive components, showing their distribution in the vehicle and the causes that make them occur, trying to emphasize the different materials which are used in the manufacturing of these components. This work is a technical approach strictly supported by an engineering concept which aims to discuss the different factors which contribute to cause premature failures of automotive components, prior to their utilization in the field or when they are exposed to the most variable conditions of use. One of the most important objectives of this study is to call the attention of design engineers, research engineers and manufacturing people to the importance of the components integrity which shall be taken into primary consideration in the design phase as well as in the specification of the material and process of manufacturing.
X