Refine Your Search

Topic

Author

Search Results

Technical Paper

Robust Trajectory Tracking Control for Intelligent Connected Vehicle Swarm System

2022-12-22
2022-01-7083
An intelligent connected vehicle (ICV) swarm system that includes N vehicles is considered. Based on the special properties of potential functions, a kinematic model describing the swarm performances is proposed, which allows all vehicles to enclose the tracking target and show both tracking and formation characteristics. Treating the performances as the desired constraints, the analytical form of constraint forces can be obtained inspired by the Udwadia-Kalaba approaches. A special approach of uncertainty decomposition to deal with uncertain interferences is proposed, and a switching-type robust control method is addressed for each vehicle agent in the swarm system. The features and validity of the addressed control are demonstrated in the numerical simulations.
Journal Article

Optimal Sizing and Control of Battery Energy Storage Systems for Hybrid Turboelectric Aircraft

2020-03-10
2020-01-0050
Hybrid-electric gas turbine generators are considered a promising technology for more efficient and sustainable air transportation. The Ohio State University is leading the NASA University Leadership Initiative (ULI) Electric Propulsion: Challenges and Opportunities, focused on the design and demonstration of advanced components and systems to enable high-efficiency hybrid turboelectric powertrains in regional aircraft to be deployed in 2030. Within this large effort, the team is optimizing the design of the battery energy storage system (ESS) and, concurrently, developing a supervisory energy management strategy for the hybrid system to reduce fuel burn while mitigating the impact on the ESS life. In this paper, an energy-based model was developed to predict the performance of a battery-hybrid turboelectric distributed-propulsion (BHTeDP) regional jet.
Technical Paper

An Optical and Numerical Characterization of Directly Injected Compressed Natural Gas Jet Development at Engine-Relevant Conditions

2019-04-02
2019-01-0294
Compressed natural gas (CNG) is an attractive, alternative fuel for spark-ignited (SI), internal combustion (IC) engines due to its high octane rating, and low energy-specific CO2 emissions compared with gasoline. Directly-injected (DI) CNG in SI engines has the potential to dramatically decrease vehicles’ carbon emissions; however, optimization of DI CNG fueling systems requires a thorough understanding of the behavior of CNG jets in an engine environment. This paper therefore presents an experimental and modeling study of DI gaseous jets, using methane as a surrogate for CNG. Experiments are conducted in a non-reacting, constant volume chamber (CVC) using prototype injector hardware at conditions relevant to modern DI engines. The schlieren imaging technique is employed to investigate how the extent of methane jets is impacted by changing thermodynamic conditions in the fuel rail and chamber.
Technical Paper

The Direct Transition of Fuel Sprays to theDense-Fluid Mixing Regime in the Contextof Modern Compression Ignition Engines

2018-04-03
2018-01-0298
Fuel supercriticality has recently received significant attention due to the elevated pressures and temperatures that directly-injected (DI) fuel sprays encounter in modern internal combustion (IC) engines. This paper presents a theoretical examination of conventional and alternative DI fuels at conditions relevant to the operation of compression ignition (CI) engines. The focus is to identify the conditions under which the injected liquid fuel can bypass the atomization process and directly transition to a diffusional mixing regime with the chamber gas. Evaluating the microscopic length-scales of the phase boundary associated with the injection of liquid nitrogen into its own vapor, it is found that the conventional threshold based on the interfacial Knudsen number (i.e. Kn = 0.1) does not adequately quantify the direct transition between sub- and supercriticality. Instead, a threshold that is an order of magnitude smaller is more appropriate for this purpose.
Technical Paper

Tradeoff Study of High Altitude Solar Reflector Concepts

2017-09-19
2017-01-2143
A direct solution to Global Warming would be to reflect a part of sunlight back into Space. A system tradeoff study is being developed with three of the concepts that are being evaluated as long-endurance high-altitude reflectors. The first concept is a high aspect ratio solar powered flying wing towing reflector sheets. This concept is named “Flying Carpet”. Second is a centrifugally stretched high altitude solar reflector (CSHASR). The CSHASR has 4 rotors made of reflector sheets with a hub stretching to 60 percent of the radius, held together by an ultralight quad-rotor structure. Each rotor is powered by a solar-electric motor. A variation on this concept, forced by nighttime descent rate concerns, is powered by tip-mounted solar panels and propellers with some battery storage augmenting rotational inertia as well as energy storage. The third concept is an Aerostatically Balanced Reflector (ABR) sheet, held up by hydrogen balloons.
Technical Paper

Aerodynamic Loads on Arbitrary Configurations: Measurements, Computations and Geometric Modeling

2017-09-19
2017-01-2162
This paper brings together three special aspects of bluff-body aeromechanics. Experiments using our Continuous Rotation method have developed a knowledge base on the 6-degree-of-freedom aerodynamic loads on over 50 different configurations including parametric variations of canonical shapes, and several practical shapes of interest. Models are mounted on a rod attached to a stepper motor placed on a 6-DOF load cell in a low speed wind tunnel. The aerodynamic loads are ensemble-averaged as phase-resolved azimuthal variations. The load component variations are obtained as discrete Fourier series for each load component versus azimuth about each of 3 primary axes. This capability has enabled aeromechanical simulation of the dynamics of roadable vehicles slung below rotorcraft. In this paper, we explore the genesis of the loads on a CONEX model, as well as models of a short and long container, using the “ROTCFD” family of unstructured Navier-Stokes solvers.
Technical Paper

Optical Characterization of Propane at Representative Spark Ignition, Gasoline Direct Injection Conditions

2016-04-05
2016-01-0842
The focus of internal combustion (IC) engine research is the improvement of fuel economy and the reduction of the tailpipe emissions of CO2 and other regulated pollutants. Promising solutions to this challenge include the use of both direct-injection (DI) and alternative fuels such as liquefied petroleum gas (LPG). This study uses Mie-scattering and schlieren imaging to resolve the liquid and vapor phases of propane and iso-octane, which serve as surrogates for LPG and gasoline respectively. These fuels are imaged in a constant volume chamber at conditions that are relevant to both naturally aspirated and boosted, gasoline direct injection (GDI) engines. It is observed that propane and iso-octane have different spray behaviors across these conditions. Iso-octane is subject to conventional spray breakup and evaporation in nearly all cases, while propane is heavily flash-boiling throughout the GDI operating map.
Technical Paper

Control of PHEV and HEV Parallel Powertrains Using a Sequential Linearization Algorithm

2015-04-14
2015-01-1219
Using measurable physical input variables, an implementable control algorithm for parallel architecture plug-in and non-plug-in hybrid electric vehicle (PHEV and HEV) powertrains is presented. The control of the electric drive is based on an algebraic mapping of the accelerator pedal position, the battery state-of-charge (SOC), and the vehicle velocity into a motor controller input torque command. This mapping is developed using a sequential linearization control (SLC) methodology. The internal combustion engine (ICE) control uses a modified accelerator pedal to throttle plate angle using an adjustable gain parameter that, in turn, determines the sustained battery SOC. Searches over an admissible control space or the use of pre-defined look-up tables are thus avoided. Actual on-road results for a Ford Explorer with a through-the-road (TTR) hybrid powertrain using this control methodology are presented.
Technical Paper

Modeling of Trace Knock in a Modern SI Engine Fuelled by Ethanol/Gasoline Blends

2015-04-14
2015-01-1242
This paper presents a numerical study of trace knocking combustion of ethanol/gasoline blends in a modern, single cylinder SI engine. Results are compared to experimental data from a prior, published work [1]. The engine is modeled using GT-Power and a two-zone combustion model containing detailed kinetic models. The two zone model uses a gasoline surrogate model [2] combined with a sub-model for nitric oxide (NO) [3] to simulate end-gas autoignition. Upstream, pre-vaporized fuel injection (UFI) and direct injection (DI) are modeled and compared to characterize ethanol's low autoignition reactivity and high charge cooling effects. Three ethanol/gasoline blends are studied: E0, E20, and E50. The modeled and experimental results demonstrate some systematic differences in the spark timing for trace knock across all three fuels, but the relative trends with engine load and ethanol content are consistent. Possible reasons causing the differences are discussed.
Technical Paper

High-Performance Plug-In Hybrid Electric Vehicle Design Studies and Considerations

2015-04-14
2015-01-1158
This paper presents a detailed design study and associated considerations supporting the development of high-performance plug-in hybrid electric vehicles (PHEVs). Due to increasingly strict governmental regulations and increased consumer demand, automotive manufacturers have been tasked with the reduction of fuel consumption and greenhouse gas (GHG) emissions. PHEV powertrains can provide a needed balance in terms of fuel economy and vehicle performance by exploiting regenerative braking, pure electric vehicle operation, engine load-point shifting, and power-enhancing hybrid traction modes. Thus, properly designed PHEV powertrains can reduce fuel consumption while increasing vehicle utility and performance.
Journal Article

Bio-Ketones: Autoignition Characteristics and Their Potential as Fuels for HCCI Engines

2013-10-14
2013-01-2627
This paper studies autoignition characteristics and HCCI engine combustion of ketone fuels, which are important constituents of recently discovered fungi-derived biofuels. Two ketone compounds, 2,4-dimethyl-3-pentanone (DMPN) and cyclopentanone (CPN), are systematically investigated in the Sandia HCCI engine, and the results are compared with conventional gasoline and neat ethanol. It is found that CPN has the lowest autoignition reactivity of all the biofuels and gasoline blends tested in this HCCI engine. The combustion timing of CPN is also the most sensitive to intake-temperature (Tin) variations, and it is almost insensitive to intake-pressure (Pin) variations. These characteristics and the overall HCCI performance of CPN are similar to those of ethanol. In contrast, DMPN shows multi-faceted autoignition characteristics. On the one hand, DMPN has strong temperature-sensitivity, even at boosted Pin, which is similar to the low-reactivity ethanol and CPN.
Journal Article

A Comparative Study of a Spark Ignition Engine Running on Hydrogen, Synthesis Gas and Natural Gas

2013-04-08
2013-01-0229
This paper presents an experimental, numerical and theoretical study of the performance of the same spark ignition engine running on four different gaseous fuels: hydrogen, two synthesis gases and natural gas. Measurements of the brake thermal efficiency, the combustion variability, the engine out emissions and the indicated, pumping and friction mean effective pressures are first presented, with particular interest placed on the lean burn performance. Combustion analysis is then undertaken, with the crank angle resolved in-cylinder turbulence and the flame propagation plotted on the so-called ‘Bradley diagram’ for turbulent premixed combustion. The loci of the combustion events on the Bradley diagram are then used to explain the observed, relative performance of the engine running on these four fuels.
Journal Article

Power-Split HEV Control Strategy Development with Refined Engine Transients

2012-04-16
2012-01-0629
Power-split hybrid-electric vehicles (HEVs) employ two power paths between the internal combustion (IC) engine and the driven wheels routed through gearing and electric machines (EMs) composing an electrically variable transmission (EVT). The EVT allows IC engine control such that rotational speed can be independent of vehicle speed at all times. By breaking the rigid mechanical connection between the IC engine and the driven wheels, the EVT allows the IC engine to operate in the most efficient region of its characteristic brake specific fuel consumption (BSFC) map. If the most efficient IC engine operating point produces more power than is requested by the driver, the excess IC engine power can be stored in the energy storage system (ESS) and used later. Conversely, if the most efficient IC engine operating point does not meet the power request of the driver, the ESS delivers the difference to the wheels through the EMs.
Journal Article

Transmission Electron Microscopy of Soot Particles Directly Sampled in Diesel Spray Flame - A Comparison between US#2 and Biodiesel Soot

2012-04-16
2012-01-0695
For a better understanding of soot formation and oxidation processes in conventional diesel and biodiesel spray flames, the morphology, microstructure and sizes of soot particles directly sampled in spray flames fuelled with US#2 diesel and soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at 50mm from the injector nozzle, which corresponds to the peak soot location in the spray flames. The spray flames were generated in a constant-volume combustion chamber under a diesel-like high pressure and high temperature condition (6.7MPa, 1000K). Direct sampling permits a more direct assessment of soot as it is formed and oxidized in the flame, as opposed to exhaust PM measurements. Density of sampled soot particles, diameter of primary particles, size (gyration radius) and compactness (fractal dimension) of soot aggregates were analyzed and compared. No analysis of the soot micro-structure was made.
Technical Paper

Performance of a Port Fuel Injected, Spark Ignition Engine Optimised for Hydrogen Fuel

2012-04-16
2012-01-0654
This paper presents a study of the performance of a 6-cylinder, spark-ignited, port-fuel-injected, production engine modified for hydrogen fueling. The engine modifications include turbo-charging, multiple fuel injectors per port and charge-dilution control techniques. Pumping losses are reduced through ultra-lean burn and throttle-less operation alongside high charge dilution ratio control achieved by twin independent variable cam timing without external EGR. Lean-burn combustion, engine-out emissions and brake thermal efficiency results are examined in detail. In particular, low NO emissions and brake thermal efficiencies near 38% are observed experimentally at the same operating conditions. The former is explained in terms of the usual thermal NOx pathway. Usage of throttle position, injection timings and cam timings for avoiding preignition and knock over the entire engine map are also discussed.
Technical Paper

Lean Burn Performance of a Natural Gas Fuelled, Port Injected, Spark Ignition Engine

2012-04-16
2012-01-0822
This paper presents a study of the performance of a lean burn, natural gas-fuelled, naturally aspirated, spark ignition engine for an E class vehicle. Engine performance and exhaust emissions (NO, CO, and UHC) data are first discussed. An energy balance of the engine operating at different loads and air-fuel ratios is then presented, and used to explain why engine efficiency varies with air-fuel ratio. Finally, the hot start drive cycle CO2e (CO2 equivalent) emissions are estimated for a vehicle with this engine. This shows a potential for significant reduction in vehicle greenhouse gas emissions compared to an equivalent gasoline-fuelled vehicle.
Technical Paper

Hydrogen as a Fuel in SI Engines - Towards Best Efficiency for Car Applications

2011-10-06
2011-28-0018
The goal of hydrogen engine research is to achieve highest possible efficiency with low NOx emissions. This is necessary for the hydrogen car to remain competitive with the ever-improving efficiency of conventional fuel's use, to take advantage of the increased availability of hydrogen distribution for fuel cells and to achieve better range than battery electric vehicles. This paper examines the special problems of hydrogen engine combustion and ways to improve efficiency. Central to this are the effects of compression ratio (CR) and lambda (excess air ratio) and ignition system. The results demonstrate highest indicated thermal efficiency at ultra lean condition of lambda ≻ 2 and with central ignition. This need for this lean mixture is partly explained by the higher heat transfer losses.
Technical Paper

Transmission Electron Microscopy of Soot Particles sampled directly from a Biodiesel Spray Flame

2011-08-30
2011-01-2046
For better understanding of soot formation and oxidation processes in a biodiesel spray flame, the morphology, microstructure and sizes of soot particles directly sampled in a spray flame fuelled with soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at different axial locations in the spray flame, 40, 50 and 70 mm from injector nozzle, which correspond to soot formation, peak, and oxidation zones, respectively. The biodiesel spray flame was generated in a constant-volume combustion chamber under a diesel-like high pressure and temperature condition (6.7 MPa, 1000K). Density, diameter of primary particles and radius of gyration of soot aggregates reached a peak at 50 mm from the injector nozzle and was lower or smaller in the formation or oxidation zones of the spray.
Journal Article

Development of a Direct Injection High Efficiency Liquid Phase LPG Spark Ignition Engine

2009-06-15
2009-01-1881
Direct Injection (DI) is believed to be one of the key strategies for maximizing the thermal efficiency of Spark Ignition (SI) engines and meet the ever-tightening emissions regulations. This paper explores the use of Liquefied Petroleum Gas (LPG) liquid phase fuel in a 1.5 liter SI four cylinder gasoline engine with double over head camshafts, four valves per cylinder, and centrally located DI injector. The DI injector is a high pressure, fast actuating injector enabling precise multiple injections of the finely atomized fuel sprays. With DI technology, the injection timing can be set to avoid fuel bypassing the engine during valve overlap into the exhaust system prior to combustion. The fuel vaporization associated with DI reduces combustion chamber and charge temperatures, thereby reducing the tendency for knocking. Fuel atomization quality supports an efficient combustion process.
Technical Paper

Exploring the Charge Composition of SI Engine Lean Limits

2009-04-20
2009-01-0929
In this paper the experimental performance of the lean limits is examined for two different types of engines the first a dedicated LPG high compression ratio 2-valve per cylinder engine (Ford of Australia MY 2001 AU Falcon) and the second a gasoline moderate compression 4-valve per cylinder variant of the same engine (Ford of Australia MY 2006 BF Falcon). The in-cylinder composition at the lean limit over a range of steady state operating conditions is estimated using a quasi-dimensional model. This makes it possible to take into account the effects of both residual fraction and fresh charge diluents (EGR and excess air) that allow the exploration of a modeled lean limit performance [1, 2]. The results are compared to the predictions from a model for combustion variability applied to the quasi-dimensional model operating in optimization mode.
X