Refine Your Search

Topic

Author

Search Results

Technical Paper

Reduction of Flow-induced Noise in Refrigeration Cycles

2024-07-02
2024-01-2972
In electrified vehicles, auxiliary units can be a dominant source of noise, one of which is the refrigerant scroll compressor. Compared to vehicles with combustion engines, e-vehicles require larger refrigerant compressors, as in addition to the interior, also the battery and the electric motors have to be cooled. Currently, scroll compressors are widely used in the automotive industry, which generate one pressure pulse per revolution due to their discontinuous compression principle. This results in speed-dependent pressure fluctuations as well as higher-harmonic pulsations that arise from reflections. These fluctuations spread through the refrigeration cycle and cause the vibration excitation of refrigerant lines and heat exchangers. The sound transmission path in the air conditioning heat exchanger integrated in the dashboard is particularly critical. Various silencer configurations can be used to dampen these pulsations.
Technical Paper

Co-Simulation of a BEV Thermal Management System with Focus on Advanced Simulation Methodologies

2023-10-31
2023-01-1609
In battery electric vehicles (BEV), thermal management is a key technique to improve efficiency and lifetime. Currently, manufacturers use different cooling concepts with numerous architectures. This work describes the development of a co-simulation framework to optimize BEV thermal management on system level, using advanced simulation methodologies also on component level, merging simulation and testing. Due to interactions between multiple conditioning circuits, thermal management optimization requires an overall vehicle approach. Thus, a full vehicle co-simulation of a BEV is developed, combining 1D thermal management software KULI and MATLAB/Simulink. Within co-simulation, the precise modeling of vehicle’s subsystems is important to predict thermal behavior and to calculate dynamic heating and cooling demands as well as exchanged energy flows with the thermal management system.
Technical Paper

Identification and Verification of Attack-Tree Threat Models in Connected Vehicles

2022-12-22
2022-01-7087
As a result of the ever-increasing application of cyber-physical components in the automotive industry, cybersecurity has become an urgent topic. Adapting technologies and communication protocols like Ethernet and WiFi in connected vehicles yields many attack scenarios. Consequently, ISO/SAE 21434 and UN R155 (2021) define a standard and regulatory framework for automotive cybersecurity, Both documents follow a risk management-based approach and require a threat modeling methodology for risk analysis and identification. Such a threat modeling methodology must conform to the Threat Analysis and Risk Assessment (TARA) framework of ISO/SAE 21434. Conversely, existing threat modeling methods enumerate isolated threats disregarding the vehicle’s design and connections. Consequently, they neglect the role of attack paths from a vehicle’s interfaces to its assets.
Technical Paper

Design and Experimental Characterization of a Parallel-Hybrid Powertrain for Hand-held Tools

2022-03-29
2022-01-0604
On the basis of small hybrid powertrain investigations in hand-held power tools for fuel consumption and emissions reduction, the prototype hybrid configuration of a small single-cylinder four-stroke internal combustion engine together with a brushless DC electric motor is built and measured on the testbench in terms of efficiency and emissions but also torque and power capabilities. The onboard energy storage system allows the combustion engine electrification for controlling the fuel amount and the combustion behavior while the electric motor placement instead of the pull-start and flywheel allows for start-stop of the system and load point shifting strategy for lower fuel consumption. The transient start-up results as well as the steady-state characterization maps of the system can set the limits on the fuel consumption reduction for such a hybrid tool compared with the baseline combustion-driven tool for given load cycle characteristics.
Journal Article

Investigation on transient behavior and SoC balancing of a hybrid powertrain hand-held tool

2022-01-09
2022-32-0025
A transient behavior investigation of a hybrid hand-held tool is carried out on near real load conditions, through a hybrid experimental and simulative study. As this study focuses on handheld tools with a varied or transient load operation like chainsaws and brush cutters, a use of a blower tool as a test-carrier and a throttle body implementation on its blower air pipe adds a controllable braking mechanism. This allows for driving varied load cycles without the need of a testbench. Experimental investigation takes place at both start-up, shut-down and load conditions and for different drive control and commutation modes of electric motor. The controller characterization and parameter selection are done. After the load cycles are driven on the test-carrier, the characterizing data are transferred to the MATLAB and Simulink simulation model to correct and calibrate its transient behavior.
Technical Paper

AI Enhanced Methods for Virtual Prediction of Short Circuit in Full Vehicle Crash Scenarios

2020-04-14
2020-01-0950
A new artificial intelligence (model order reduction) / finite element coupled approach will be presented for the risk assessment of battery fire during a car crash event. This approach combines standard crash finite element for the main car body with a reduced order model for the battery. Simulation is today used by automotive engineering teams to design lightweight vehicle bodies fulfilling vehicle safety regulations. Legislation is rapidly evolving to accommodate the growing electrical vehicle market share and is considering additional battery safety requirements. The focus is on avoiding internal short circuit due to internal damage within a cell which may result in a fire hazard. Assessing short circuit risk in CAE at the vehicle level is complex as there involves phenomena at different scales. The vehicle deforms on a macroscale level during the impact event.
Technical Paper

A Smart Icing Detection System for Any Location on the Outer Aircraft Surface

2019-06-10
2019-01-1931
Given approximately one million small and light aircraft in operation worldwide, icing detection and icing quantification of in-flight icing are still an open research topic. Despite technical means are available to de-ice on ground, there is a lack of a suitable control system based on sensor data to de-ice while the aircraft is airborne. Most often, it is still task of the pilot to visually inspect the icing status of the airfoil and/or other critical parts of the aircraft such as engine air intakes, which distracts the flight crew from flying the aircraft especially in IMC conditions. Based on preliminary simulation and tests in 2014 in a collaborative research project lasting from 2015 until 2018, the technology of energy self-sustaining, wireless, self-adhesive smart sensors for industrial sensing in an aerodynamically critical environment (i.e. wind turbines) was further investigated to fulfil general aviation requirements.
Technical Paper

Application of Electrically Driven Coolant Pumps on a Heavy-Duty Diesel Engine

2019-01-15
2019-01-0074
A reduction in CO2 emissions and consequently fuel consumption is essential in the context of future greenhouse gas limits. With respect to the thermodynamic loss analysis of an internal combustion engine, a gap between the net indicated thermal efficiency and the brake thermal efficiency is recognizable. This share is caused by friction losses, which are the focus of this research project. The parasitic loss reduction potential by replacing the mechanical water pump with an electric coolant pump is discussed in the course of this work. This is not a novel approach in light duty vehicles, whereas in commercial vehicles a rigid drive of all auxiliaries is standard. Taking into account an implementation of a 48-V power system in the short or medium term, an electrification of auxiliary components becomes feasible. The application of electric coolant pumps on an Euro VI certified 6-cylinder in-line heavy-duty diesel engine regarding fuel economy was thus performed.
Technical Paper

System Design Model for Parallel Hybrid Powertrains using Design of Experiments

2018-04-03
2018-01-0417
The paper focuses on an optimization methodology, which uses Design of Experiments (DoE) methods to define component parameters of parallel hybrid powertrains such as number of gears, transmission spread, gear ratios, progression factor, electric motor power, electric motor nominal speed, battery voltage and cell capacity. Target is to find the optimal configuration based on specific customer targets (e.g. fuel consumption, performance targets). In the method developed here, the hybrid drive train configuration and the combustion engine are considered as fixed components. The introduced methodology is able to reduce development time and to increase output quality of the early system definition phase. The output parameters are used as a first hint for subsequently performed detailed component development. The methodology integrates existing software tools like AVL CRUISE [5] and AVL CAMEO [1].
Technical Paper

Thermodynamic Loss Analysis of a High Power Motorcycle Engine with Focus on Alcohol Blended Fuels

2017-11-05
2017-32-0070
The development of future internal combustion engines and fuels is influenced by decreasing energy resources, restriction of emission legislation and increasing environmental awareness of humanity itself. Alternative renewable fuels have, in dependency on their physical and chemical properties, on the production process and on the raw material, the potential to contribute a better well-to-wheel-CO2-emission-balance in automotive and nonautomotive applications. The focus of this research is the usage of alcohol fuels, like ethanol and 2-butanol, in motorcycle high power engines. The different propulsion systems and operation scenarios of motorcycle applications in comparison to automobile applications raise the need for specific research in this area.
Journal Article

Advanced Heat Transfer and Underhood Airflow Investigation with Focus on Continuously Variable Transmission (CVT) of Snowmobiles

2017-06-28
2017-01-9180
The presented paper focuses on the computation of heat transfer related to continuously variable transmissions (CVTs). High temperatures are critical for the highly loaded rubber belts and reduce their lifetime significantly. Hence, a sufficient cooling system is inevitable. A numerical tool which is capable of predicting surface heat transfer and maximum temperatures is of high importance for concept design studies. Computational Fluid Dynamics (CFD) is a suitable method to carry out this task. In this work, a time efficient and accurate simulation strategy is developed to model the complexity of a CVT. The validity of the technique used is underlined by field measurements. Tests have been carried out on a snowmobile CVT, where component temperatures, air temperatures in the CVT vicinity and engine data have been monitored. A corresponding CAD model has been created and the boundary conditions were set according to the testing conditions.
Journal Article

Improved Modeling of Near-Wall Heat Transport for Cooling of Electric and Hybrid Powertrain Components by High Prandtl Number Flow

2017-03-28
2017-01-0621
Reynolds-averaged Navier-Stokes (RANS) computations of heat transfer involving wall bounded flows at elevated Prandtl numbers typically suffer from a lack of accuracy and/or increased mesh dependency. This can be often attributed to an improper near-wall turbulence modeling and the deficiency of the wall heat transfer models (based on the so called P-functions) that do not properly account for the variation of the turbulent Prandtl number in the wall proximity (y+< 5). As the conductive sub-layer gets significantly thinner than the viscous velocity sub-layer (for Pr >1), treatment of the thermal buffer layer gains importance as well. Various hybrid strategies utilize blending functions dependent on the molecular Prandtl number, which do not necessarily provide a smooth transition from the viscous/conductive sub-layer to the logarithmic region.
Journal Article

Investigations and Analysis of Working Processes of Two-Stroke Engines with the Focus on Wall Heat Flux

2016-11-08
2016-32-0028
Small displacement two-stroke engines are widely used as affordable and low-maintenance propulsion systems for motorcycles, scooters, hand-held power tools and others. In recent years, considerable progress regarding emission reduction has been reached. Nevertheless, a further improvement of two-stroke engines is necessary to cover protection of health and environment. In addition, the shortage of fossil fuel resources and the anthropogenic climate change call for a sensual use of natural resources and therefore, the fuel consumption and engine efficiency needs to be improved. With the application of suitable analyses methods it is possible to find improving potential of the working processes of these engines. The thermodynamic loss analysis is a frequently applied method to examine the working process and is universally adaptable.
Technical Paper

Evaluation and Modeling of Rotor Position Sensor Characteristics for Electric Traction Motors

2016-04-05
2016-01-1065
Vehicles driven by electric or hybrid technologies have the advantage that a high torque potential can be used from the start, hence the initial vehicle acceleration is higher compared to conventional propulsion concepts [1]. The speed-torque characteristic of electric machines is nearly ideal for the use in automotive applications and electrical machines can be controlled with a high efficiency. The aim of the present work is the examination of different sensor technologies, which are used in such automotive applications to measure the rotor position of electric motors. The project includes the assessment and evaluation of different sensor technologies, e.g. resolver, eddy current sensors and sensors based on magneto-resistive effects. The quality of the sensor angular measurement depends on different parameters, for example misalignment in planar direction, longitudinal direction, tilt angle, temperature, rotational speed and supply voltage.
Technical Paper

The Potential of Key Process/Performance Indicators (KPIs) in Automotive Software Quality Management

2016-04-05
2016-01-0046
A steady increasing share and complexity of automotive software is a huge challenge for quality management during software development and in-use phases. In cases of faults occurring in customer’s use, warranty leads to product recalls which are typically associated with high costs. To avoid software faults efficiently, quality management and enhanced development processes have to be realized by the introduction of specific analysis methods and Key Process/Performance Indicators (KPIs) to enable objective quality evaluations as soon as possible during product development process. The paper introduces an application of specific analysis methods by using KPIs and discusses their potential for automotive software quality improvement. Target is to support quality evaluation and risk-analysis for the release process of automotive software.
Technical Paper

Precise Dummy Head Trajectories in Crash Tests based on Fusion of Optical and Electrical Data: Influence of Sensor Errors and Initial Values

2015-04-14
2015-01-1442
Precise three-dimensional dummy head trajectories during crash tests are very important for vehicle safety development. To determine precise trajectories with a standard deviation of approximately 5 millimeters, three-dimensional video analysis is an approved method. Therefore the tracked body is to be seen on at least two cameras during the whole crash term, which is often not given (e.g. head dips into the airbag). This non-continuity problem of video analysis is surmounted by numerical integration of differential un-interrupted electrical rotation and acceleration sensor signals mounted into the tracked body. Problems of this approach are unknown sensor calibration errors and unknown initial conditions, which result in trajectory deviations above 10 centimeters.
Technical Paper

Holistic Approach for Improved Safety Including a Proposal of New Virtual Test Conditions of Small Electric Vehicles

2015-04-14
2015-01-0571
In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
Technical Paper

From Natural Language to Semi-Formal Notation Requirements for Automotive Safety

2015-04-14
2015-01-0265
The standard ISO 26262 stipulates a “top-down” approach based on the process “V” model, by conducting a hazard analysis and risk assessment to determine the safety goals, and subsequently derives the safety requirements down to the appropriate element level. The specification of safety goals is targeted towards identified hazardous events, whereas the classification of safety requirements does not always turn out non-ambiguous. While requirement formalization turns out to be advantageous, the translation from natural language to semi-formal requirements, especially in context of ISO 26262, poses a problem. In this publication, a new approach for the formalization of safety requirements is introduced, targeting the demands of safety standard ISO 26262. Its part 8, clause 6 (“Specification and management of safety requirements”) has no dedicated work product to accomplish this challenging task.
Technical Paper

Nearfield Acoustical Holography for the Characterization of Cylindrical Sources: Practical Aspects

2014-06-30
2014-01-2094
Automotive industry is becoming more and more interested in assessing the noise of electric motors, since their integration in many types of road vehicles is rapidly growing in a market oriented to hybridization and electrification. The acoustic characterization of an electric motor is often being performed numerically, having as consequence the fact that the investigation is confined to one specific model belonging to one particular type of motor. This paper proposes an experimental airborne sound characterization methodology, suitable for any type of cylindrical source, based on a set of data acquired following a cylindrical Nearfield Acoustical Holography (NAH) scheme. Such an approach allows the evaluation of sound intensity, as well as pressure level and particle velocity.
Technical Paper

Vibration Comfort Control for HEV Based on Machine Learning

2014-06-30
2014-01-2091
Hybrid electric vehicles (HEVs) with a power-split system offer a variety of possibilities in reduction of CO2 emissions and fuel consumption. Power-split systems use a planetary gear sets to create a strong mechanical coupling between the internal combustion engine, the generator and the electric motor. This concept offers rather low oscillations and therefore passive damping components are not needed. Nevertheless, during acceleration or because of external disturbances, oscillations which are mostly influenced by the ICE, can still occur which leads to a drivability and performance downgrade. This paper proposes a design of an active damping control system which uses the electric motor to suppress those oscillations instead of handling them within the ICE control unit. The control algorithm is implemented as part of an existing hybrid controller without any additional hardware introduced.
X