Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental Investigations Regarding the Potential of an Electronic Ignition Timing Control for a Lawn Mower Engine

2016-11-08
2016-32-0083
In order to fulfill future regulations regarding emissions and CO2 reduction, the small engine market inclines to migrate from carburetor systems to cleaner, more efficient electronic ignition controls and electronic fuel injection systems. When implementing such mechatronic systems in small engine applications, one has to consider specific boundary conditions like the lack of relevant sensors, limited possibilities in terms of space and of course the necessity to keep the costs as low as possible. Especially in the non-road mobile machinery (NRMM) segment, the absence of sensors makes it difficult to apply standard electronic control systems, which are based on engine related input signals provided by sensors. One engine related signal, which is even provided by the simplest engine setup, is some form of the crankshaft speed since it is essential for the functionality of the engine.
Technical Paper

Expansion to Higher Efficiency - Experimental Investigations of the Atkinson Cycle in Small Combustion Engines

2015-11-17
2015-32-0809
The enhancement of efficiency will play a more and more important role in the development of future (small) internal combustion engines. In recent years, the Atkinson cycle, realized over the crank drive, has attracted increasing attention. Several OEMs have been doing investigations on this efficiency-increasing principle with in the whole range from small engines up to automotive ones. In previous publications, the authors stated that an indicated efficiency of up to 48% could be reached with an Atkinson cycle-based engine. However, these studies are based on 1D-CFD simulation. To verify the promising simulation results, a prototype engine, based on the Atkinson principle, was designed and experimentally tested. The aim of the present study is to evaluate and validate the (indicated) engine efficiency gained by experimental tests compared to the predicted simulation results. In order to investigate part load behavior, several valve timing strategies were also developed and tested.
Technical Paper

Fundamental Investigations on the Boost Pressure Control System of Charged Aircraft Engines in the Aviation Class ELA1 / Approved Systems Versus New Solutions

2012-10-23
2012-32-0048
Aircraft engines in the (ELA1) category, with a maximum power of up to 100kW, are characterized by a verified state of the art technology. New developments of engine technologies and control methods are very slowly being introduced into this engine segment. This trend is based on the fact that new technologies implemented in aircraft engines must be thoroughly certified and validated in a very complex and documented procedure. For this reason, most of the engines in this class are equipped with a carburetor as an air/fuel mixture preparation system. Moreover, naturally aspirated spark ignited engines are widely used in the aircraft category, with a take-off weight of up to 1000kg.
X