Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermomechanical Fatigue Behavior of a Cast Austenitic Stainless Steel

2024-04-09
2024-01-2683
Cast austenitic stainless steels, such as 1.4837Nb, are widely used for turbo housing and exhaust manifolds which are subjected to elevated temperatures. Due to assembly constraints, geometry limitation, and particularly high temperatures, thermomechanical fatigue (TMF) issue is commonly seen in the service of those components. Therefore, it is critical to understand the TMF behavior of the cast steels. In the present study, a series of fatigue tests including isothermal low cycle fatigue tests at elevated temperatures up to 1100°C, in-phase and out-of-phase TMF tests in the temperature ranges 100-800°C and 100-1000°C have been conducted. Both creep and oxidation are active in these conditions, and their contributions to the damage of the steel are discussed.
Technical Paper

3D CFD Modeling of an Electric Motor to Predict Spin Losses at Different Temperatures

2024-04-09
2024-01-2208
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed.
Technical Paper

A Renewed Look at Centralized vs. Decentralized Actuation for Braking Systems

2023-11-05
2023-01-1865
De-centralized brake actuation – that is, brake systems that incorporate individual actuators at each wheel brake location to both provide the apply energy and the modulation of braking force – is not a new area of study. Typically realized in the form of electro-mechanical brake calipers or drum brakes, or as “single corner” hydraulic actuators, de-centralized actuation in braking systems has already been deployed in production on General Motor EV1 Electric Vehicle (1997) in the form of electric drum brakes and has been studied continually by the automotive industry since then. It is frequently confused with “brake by wire,” and indeed practical implementations of de-centralized actuation are a form of brake by wire technology. However, with millions of vehicles on the road already with “brake by wire” systems - the vast majority of which have centralized brake actuation – the future of “brake by wire” is arguable settled.
Technical Paper

Lubrication Effects on Automotive Steel Friction between Bending under Tension and Draw Bead Test

2023-04-11
2023-01-0729
Zinc-based electrogalvanized (EG) and hot-dip galvanized (HDGI) coatings have been widely used in automotive body-in-white components for corrosion protection. The formability of zinc coated sheet steels depends on the properties of the sheet and the interactions at the interface between the sheet and the tooling. The frictional behavior of zinc coated sheet steels is influenced by the interfacial conditions present during the forming operation. Friction behavior has also been found to deviate from test method to test method. In this study, various lubrication conditions were applied to both bending under tension (BUT) test and a draw bead simulator (DBS) test for friction evaluations. Two different zinc coated steels; electrogalvanized (EG) and hot-dip galvanized (HDGI) were included in the study. In addition to the coated steels, a non-coated cold roll steel was also included for comparison purpose.
Technical Paper

Perspectives on the Transition from Hardware-Based Validation and Product Evaluation to Virtual Processes

2023-04-11
2023-01-0164
Accelerating product development cycles and incentives to reduce costs in product development are strong motivators to move to virtual development and validation processes. Challenges to moving to a virtual paradigm include a wealth of historical data and context for hardware tests, uncertainty over dependencies, and a lack of a clear path of transition to virtual methods. In this paper we will discuss approaches to understanding the value created by hardware tests and aligning that value to virtual processes. We will also discuss the need for a virtual context to be added to SAE J1739 [1] (DFMEA detection criteria), and how to create paths to maximize the value of virtual assessments. Finally, we will also discuss the cultural and organizational changes required to support.
Technical Paper

Application of a Mechanism-Based Short Crack Growth Model for the Fatigue Analysis of an Engine Cylinder Block Including Low-Frequency Thermal and High-Frequency Dynamic Loading

2023-04-11
2023-01-0595
Cast aluminum cylinder blocks are frequently used in gasoline and diesel internal combustion engines because of their light-weight advantage. However, the disadvantage of aluminum alloys is their relatively low strength and fatigue resistance which make aluminum blocks prone to fatigue cracking. Engine blocks must withstand a combination of low-cycle fatigue (LCF) thermal loads and high-cycle fatigue (HCF) combustion and dynamic loads. Reliable computational methods are needed that allow for accurate fatigue assessment of cylinder blocks under this combined loading. In several publications, the mechanism-based thermomechanical fatigue (TMF) damage model DTMF describing the growth of short fatigue cracks has been extended to include the effect of both LCF thermal loads and superimposed HCF loadings. This approach is applied to the finite life fatigue assessment of an aluminum cylinder block. The required material properties related to LCF are determined from uniaxial LCF tests.
Technical Paper

Thermomechanical Fatigue Life Predictions of Cast Aluminum Cylinder Heads Considering Defect Distribution

2023-04-11
2023-01-0594
Semi-Permanent Mold (SPM) cast aluminum alloy cylinder heads are commonly used in gasoline and diesel internal combustion engines. The cast aluminum cylinder heads must withstand severe cyclic mechanical and thermal loads throughout their lifetime. The casting process is inherently prone to introducing casting defects and microstructural heterogeneity. Porosity, which is one of the most dominant volumetric defects in such castings, has a significant detrimental effect on the fatigue life of these components since it acts as a crack initiation site. A reliable analytical model for Thermo-Mechanical Fatigue (TMF) life prediction must take into account the presence of these defects. In previous publications, it has been shown that the mechanism-based TMF damage model (DTMF) is able to predict with good accuracy crack locations and the number of cycles to propagate an initial defect into a critical crack size in aluminum cylinder heads considering ageing effects.
Technical Paper

Driveline Control Influence when ABS Active

2023-04-11
2023-01-0662
The interaction between driveline control and anti-lock braking system (ABS) control in electric vehicles (EV) was investigated based on multi-body dynamics (MBD) model and control model co-simulation. Two primary driveline control algorithms, active damping control and wheel flare control, were integrated with ABS control in Simulink model and the influence on ABS control was studied. The event for high mu to low mu transition was simulated. When ABS control is active on low mu surface, the vehicle shows large wheel slip and long duration time before wheel speed returns to stable control. This performance could be improved with activating driveline control. Deceleration uniformity metric shows that active damping control has very small effect when ABS control becomes stable after passing through the high mu to low mu transition period. Driveline damping control can help to reduce vibration, but it is difficult to find satisfied tuning for wheel speed performance.
Technical Paper

Motor Level Torque Ripple Requirement Development for Vehicle Seat Track Acceleration

2023-04-11
2023-01-0565
Torque ripple from electric motor can excite a system resonance perceived as vibration at the vehicle seat track. The CAE simulation procedure was applied to analyze the seat track acceleration excited by electric motor torque ripple. In this study, the transfer function between the electric motor torque and vehicle level seat track acceleration was developed, and it incorporates the control capability and vehicle sensitivity subfunctions. The motor level torque ripple requirement was developed, which can support motor design in early vehicle development stage based on vehicle level criteria. The analysis results obtained for motor level torque ripple requirement shows good agreement with the experimental validation using vehicle test data. The variation study on control capability and vehicle sensitivity was investigated, and the results can help to identify the solution to improve vehicle torque ripple response.
Technical Paper

An Automated Procedure for Implementing Steer Input during Ditch Rollover CAE Simulation

2022-10-05
2022-28-0365
Vehicle manufacturers conduct tests to develop crash sensing system calibrations. Ditch fall-over is one of a suite of laboratory tests used to develop rollover sensing calibrations that can trigger deployment of safety devices like roof rail airbags and seat belt pretensioners. The ditch fall-over test simulates a flat road followed by a ditch on one side of the road. The vehicle heads into the ditch and the driver applies swift steer input once the ditch slope is sensed. Typically, the steer input is applied when the two down-slope wheels on the ditch side enter the ditch. Multi-Body Dynamics (MBD) software can be used for virtual simulation of these test events. Conventionally in simulations, the vehicle-model is run without steer input and the marking line crossing time is observed/manually recorded from observation of simulation video. This recorded time is used to apply the steer input and the full event is then re-simulated.
Technical Paper

Advanced Continuous Sensing Technology for Hydraulic Brake Fluid

2022-09-19
2022-01-1185
The Continuous Fluid Level and Quality Indicator (CFLQI) technology is focused on increasing the sampling frequency of brake fluid reservoir volume and detecting specific brake fluid contaminants. CFLQI targets to improve diagnostics detection range and resulting degraded vehicle operation strategies by increasing sensitivity to brake fluid loss and the addition of a fluid quality feature. The theory of CFLQI is to improve future autonomous and highly automated vehicle performance, both of which will have reduced driver input and service schedules, by providing earlier fluid level and fluid health warnings. The two technologies selected to prove theory of operation were ultra-sonic sensor and capacitive sense element technology. Both technologies show initial capability to meet fluid sensing targets with system level ASIL D ASIC design. The CFLQI compliments and improves upon current technology of brake pad wear sensors, leak detection diagnostics and brake fluid level monitoring.
Journal Article

Re-imagining Brake Disc Thermal Fatigue Testing to Relate to Field Use

2022-09-19
2022-01-1163
The validation of brake discs has remained, to this day, heavily reliant on “Thermal Abuse” or “Thermal Cracking” type testing, with many procedures so dated that most engineers active in the industry today cannot even recall the origin of the test. These procedures - of which there are many variants - all share the trait of greatly accelerating durability testing by performing repeated high power (high speed and high deceleration) brake applies to drive huge temperature gradients and internal stress, and often allowing the disc to get very hot, to where the strength of the material from which the disc is constructed is significantly degraded. There is little debate about whether these procedures work; by and large disc durability issues in the field are extremely rare.
Journal Article

Estimating Brake Pad Life in Regenerative Braking Intensive Vehicle Applications

2022-09-19
2022-01-1161
Regenerative braking without question greatly impacts brake pad service life in the field, in most cases extending it significantly. Estimating its impact precisely has not been an overriding concern - yet - due in part to the extensive sharing of brake components between regen-intensive battery-electric and hybrid vehicles, and their more friction-brake intensive internal combustion engine powered sibling. However, a multitude of factors are elevating the need for a more accurate estimation, including the emerging of dedicated electric vehicle architectures with opportunities for optimizing the friction brake design, a sharp focus on brake particulate emissions and the role of regenerative braking, a need to make design decisions for features such as corrosion protection for brake pad and pad slide components, and the emergence of driver-facing features such as Brake Pad Life Monitoring.
Technical Paper

CAE Method for Automotive Remote Function Actuator System Range Simulation

2022-03-29
2022-01-0129
Remote Function Actuator (RFA) systems are widely used as the standard solution for conveniently accessing vehicles by remote control. To accelerate product development cycles and reduce engineering costs of physical test, a computer aided engineering (CAE) method has been developed to predict transmission range of the RFA system. Firstly, the detailed computational electromagnetic (CEM) models of the transmitting and receiving antennas were developed. Secondly, the articulated human model and the full vehicle meshed model were introduced to the CEM models to reflect the physical test environment. Lastly, the RFA system range model was built by including both the key fob held by an articulated human body and RFA module installed in the fully meshed vehicle. The transmission range could be extracted when the simulated received power reached the receiving sensitivity of the RFA module.
Journal Article

Low-Cost Magnesium Alloy Sheet Component Development and Demonstration Project

2022-03-29
2022-01-0248
Most of the applications of magnesium in lightweighting commercial cars and trucks are die castings rather than sheet metal, and automotive applications of magnesium sheet have typically been experimental or low-volume serial production. The overarching objective of this collaborative research project organized by the United States Automotive Materials Partnership (USAMP) was to develop new low-cost magnesium alloys, and demonstrate warm-stamping of magnesium sheet inner and outer door panels for a 2013 MY Ford Fusion at a fully accounted integrated component cost increase over conventional steel stamped components of no more than $2.50/lb. saved ($5.50/kg saved). The project demonstrated the computational design of new magnesium (Mg) alloys from atomistic levels, cast new experimental alloy ingots and explored thermomechanical rolling processes to produce thin Mg sheet of desired textures.
Technical Paper

In-Depth Considerations for Electric Vehicle Braking Systems Operation with Steep Elevation Changes and Trailering

2021-10-11
2021-01-1263
As the automotive industry prepares to roll out an unprecedented range of fully electric propulsion vehicle models over the next few years - it really brings to a head for folks responsible for brakes what used to be the subject of hypothetical musings and are now pivotal questions for system design. How do we really go about designing brakes for electric vehicles, in particular, for the well-known limit condition of descending a steep grade? What is really an “optimal’ design for brakes considering the imperatives for the entire vehicle? What are the real “limit conditions” for usage that drive the fundamental design? Are there really electric charging stations planned for or even already existing in high elevations that can affect regenerative brake capacity on the way down? What should be communicated to drivers (if anything) about driving habits for electric vehicles in routes with significant elevation change?
Journal Article

Application of Brake System Failed State Performance and Reliability Requirements to Brake System Architecting

2021-10-11
2021-01-1267
The modern braking system in the field today may be controlled by over a million lines of computer code and may feature several hundred moving parts. Although modern brake systems generally deliver performance, even with partial failures present in the system, that is well above regulatory minimums, they also have a level of complexity that extends well beyond what the authors of existing regulations had envisioned. Complexity in the braking system is poised for significant increases as advanced technologies such as self-driving vehicles are introduced, and as multiple systems are linked together to provide vehicle-level “features” to the driver such as deceleration (which can invoke service braking, regenerative braking, use of the parking brake, and engine braking). Rigorous safety-case analysis is critical to bring a new brake system concept to market but may be too tedious and rely on too many assumptions to be useful in the early architecting stages of new vehicle development.
Journal Article

Lining Wear Measurements using a Coordinate Measurement Machine

2021-10-11
2021-01-1270
Accurate measurements of brake friction materials are critical to understanding brake behaviors during testing. Current methods typically utilize a hand gauge (or a machine, in some cases) to sample various discrete points on the brake lining. This approach limits measurements to planar wear characteristics, taper and thickness, and excludes more complex measurements such as cupping. The limited number of points means that a single errant point measurement or the choice of point locations can have a large impact on the reported wear measurement. This paper will describe a method for utilizing a Coordinate Measurement Machine (CMM) fitted with a laser line scanning tool to generate a point cloud of data that can then be compared to an earlier measurement of the same piece or to a math model. This method produces thousands of data points which allows for more accurate volumetric wear calculations and color maps of the entire friction face.
Journal Article

The Influence of Wheel Rotations to the Lateral Runout of a Hybrid Material or Dimensionally Reduced Wheel Bearing Flange

2021-10-11
2021-01-1298
The automotive industry is continuously striving to reduce vehicle mass by reducing the mass of components including wheel bearings. A typical wheel bearing assembly is mostly steel, including both the wheel and knuckle mounting flanges. Mass optimization of the wheel hub has traditionally been accomplished by reducing the cross-sectional thickness of these components. Recently bearing suppliers have also investigated the use of alternative materials. While bearing component performance is verified through analysis and testing by the supplier, additional effects from system integration and performance over time also need to be comprehended. In a recent new vehicle architecture, the wheel bearing hub flange was reduced to optimize it for low mass. In addition, holes were added for further mass reduction. The design met all the supplier and OEM component level specifications.
Technical Paper

Designing a Next Generation Trailer Braking System

2021-10-11
2021-01-1268
Passenger vehicles have made astounding technological leaps in recent years. Unfortunately, little of that progress has trickled down to other segments of the transportation industry leaving opportunities for massive gains in safety and performance. In particular, the electric drum brakes on most consumer trailers differ little from those on trailers over 70 years ago. Careful examination of current production passenger vehicle hardware and trailering provided the opportunity to produce a design and test vehicle for a plausible, practical, and performant trailer braking system for the future. This study equips the trailer with high control frequency antilock braking and dynamic torque distribution through use of passenger vehicle grade apply hardware.
X