Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Optical Investigations of an Oxygenated Alternative Fuel in a Single Cylinder DISI Light Vehicle Gasoline Engine

2021-04-06
2021-01-0557
In this study, a fully optically accessible single-cylinder research engine is the basis for the visualization and generation of extensive knowledge about the in-cylinder processes of mixture formation, ignition and combustion of oxygenated synthetic fuels. Previous measurements in an all-metal engine showed promising results by using a mixture of dimethyl carbonate and methyl formate as a fuel substitute in a DISI-engine. Lower THC and NOx emissions were observed along with a low PN-value, implying low-soot combustion. The flame luminosity transmitted via an optical piston was split in the optical path to simultaneously record the natural flame luminosity with an RGB high-speed camera. The second channel consisted of OH*-chemiluminescence recording, isolated by a bandpass filter via an intensified monochrome high-speed camera.
Technical Paper

The Potential of Gasoline Fueled Pre Chamber Ignition Combined with Elevated Compression Ratio

2020-04-14
2020-01-0279
Pre-chamber ignition is a method to simultaneously increase the thermal efficiency and to meet ever more stringent emission regulations at the same time. In this study, a single cylinder research engine is equipped with a tailored pre-chamber ignition system and operated at two different compression ratios, namely 10.5 and 14.2. While most studies on gasoline pre-chamber ignition employ port fuel injection, in this work, the main fuel quantity is introduced by side direct injection into the combustion chamber to fully exploit the knock mitigation effect. Different pre-chamber design variants are evaluated considering both unfueled and gasoline-fueled operation. As for the latter, the influence of the fuel amount supplied to the pre-chamber is discussed. Due to its principle, the pre-chamber ignition system increases combustion speeds by generating enhanced in-cylinder turbulence and multiple ignition sites. This property proves to be an effective measure to mitigate knocking effects.
Technical Paper

Development of a Model-Based HCCI Control Strategy for an Engine with a Fully Variable Valve Train

2013-04-08
2013-01-1667
This paper discusses research activities at the Technische Universität München on the HCCI combustion process, focusing on the development of a model-based control concept with pressure indication. As a first step sensitivity analyses have been carried out to investigate influences of different injection strategies on the combustion and emission characteristics. An optimal injection strategy has been determined and reasonable control variables and ranges corresponding to this strategy were defined. Comprehensive steady-state measurements have been conducted to detect the engine characteristics. In order to limit the experimental effort, principles of DoE (Design of Experiments) have been used to define a methodological approach in the planning of the measurements. Afterwards a multiple-input multiple-output engine model including boundary models for input settings has been designed out of the measurement results.
X