Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Effect of Exhaust Catalysts on Regulated and Unregulated Emissions from Low Temperature Diesel Combustion with High Rates of Cooled EGR

2008-04-14
2008-01-0647
Unregulated emissions from a DI diesel engine with ultra-high EGR low temperature combustion were analyzed using Fourier transform infrared (FTIR) spectroscopy and the reduction characteristics of both regulated and unregulated emissions by two exhaust catalysts were investigated. With ultra-high EGR suppressing the in-cylinder soot and Nox formation as well as with the exhaust catalysts removing the engine-out THC and CO emissions, clean diesel operation in terms of ultra-low regulated emissions (Nox, PM, THC, and CO) is established in an operating range up to 50% load. To realize smokeless low temperature combustion at higher loads, EGR has to be increased to a rate with the overall (average) excess air ratio less than the stoichiometric ratio.
Technical Paper

Improvements in Low Temperature Diesel Combustion with Blending ETBE to Diesel Fuel

2007-07-23
2007-01-1866
The effects of blending ETBE to diesel fuel on the characteristics of low temperature diesel combustion and exhaust emissions were investigated in a naturally-aspirated DI diesel engine with large rates of cooled EGR. Low temperature smokeless diesel combustion in a wide EGR range was established with ETBE blended diesel fuel as mixture homogeneity is promoted with increased premixed duration due to decreases in ignitability as well as with improvement in fuel vaporization due to the lower boiling point of ETBE. Increasing the ETBE content in the fuel helps to suppress smoke emissions and maintain efficient smokeless operation when increasing EGR, however a too high ETBE content causes misfiring at larger rates of EGR. While the NOx emissions increase with increases in ETBE content at high intake oxygen concentrations, NOx almost completely disappears when reducing the intake oxygen content below 14 % with cooled EGR.
Technical Paper

Characterization of Low Temperature Diesel Combustion with Various Dilution Gases

2007-04-16
2007-01-0126
The effects of intake dilution with various dilution gases including nitrogen, argon, and carbon dioxide on low temperature diesel combustion were investigated in a naturally aspirated DI diesel engine to understand the mechanism of the simultaneous reductions in smoke and NOx with ultra-high EGR. NOx almost completely disappears with the intake oxygen concentration diluted below 16% regardless of the kind of dilution gas. Smoke emissions decrease with increased heat capacity of the charged gas due to promotion of mixture homogeneity with longer ignition delays. Intake dilution with the 36% CO2 + 64% Ar mixture which has a similar specific heat capacity as N2 shows lower smoke emissions than with N2. Chemical kinetics analysis shows that carbon dioxide may help to reduce NOx and soot by lowering the reaction temperature as well as by changing the concentrations of some radicals or/and species related to soot and NOx formation.
Technical Paper

Mechanisms in Reducing Smoke and NOx from BDF Combustion by Ethanol Blending and EGR

2007-04-16
2007-01-0622
Palm oil has the important advantage of productivity compared to other vegetable oils such as rapeseed oil and soybean oil. However, the cold flow performance of palm oil methyl ester (PME) is poorer than other vegetable oil based biodiesel fuels. Previous research by the authors has shown that ethanol blending into PME improves the cold flow performance and considerably reduces smoke emission. The reduced smoke may be expected to allow an expansion in the EGR limit and lead to reduced NOx. This paper experimentally analyses the influence of EGR on smoke and NOx emissions from the diesel combustion with PME/ethanol blended fuel. The mechanisms in the smoke reduction are also analyzed.
Technical Paper

Influence of Carbon Dioxide on Combustion in an HCCI Engine with the Ignition-Control by Hydrogen

2006-10-16
2006-01-3248
A homogeneous-charge compression-ignition (HCCI) engine system that was fuelled with dimethyl ether (DME) and methanol-reformed gas (MRG) has been proposed in the previous research. Adjusting the proportion of DME and MRG can effectively control the ignition timing of the engine. In the system, both fuels are to be produced from methanol in onboard reformers utilizing the engine exhaust gas heat. While hydrogen contained in MRG has the main role of the ignition control, hydrogen increases with carbon dioxide in the methanol reforming. This paper investigates the influence of carbon dioxide on HCCI combustion engine with the ignition control by hydrogen. Both thermal and chemical effects of carbon dioxide are analyzed.
Technical Paper

Dependence of Ultra-High EGR Low Temperature Diesel Combustion on Fuel Properties

2006-10-16
2006-01-3387
The dependence of ultra-high EGR low temperature diesel combustion on fuel properties including cetane number and distillation temperature was investigated with a single-cylinder, naturally aspirated, 1.0 L, common rail DI diesel engine. Decreasing cetane number in fuels significantly reduces smoke emission due to an extension in ignition delay and the subsequent improvement in mixture formation. Smokeless combustion, ultra-low NOx, and efficient operating range with regard to EGR and IMEP are significantly extended by decreasing fuel cetane number. Changes in fuel distillation temperature do not result in significant differences in smoke emission and thermal efficiency for ultra-high EGR operation, and smokeless operation is established even with higher distillation temperature fuels as long as fuel cetane number is sufficiently low.
X