Refine Your Search

Topic

Author

Search Results

Technical Paper

Fatigue Analysis and Rapid Design Process of Anti-vibration Rubber Parts for Automobiles

2024-04-09
2024-01-2255
In recent years, an increase in vehicle weight due to the electrification of automobiles, specifically EVs, has increased the input loads on anti-vibration rubber parts. Moreover, the characteristics of these loads have also changed due to the rotational drive of electric motors, regenerative braking, and other factors. When designing a vehicle, in advance it is necessary to set specifications that take into account the spring characteristics and durability of the anti-vibration rubber parts in order to meet functional requirements. In this study, the hyperelastic and fatigue characteristics (S-N diagram and Haigh diagram) of Rubbers which is widely used for anti-vibration rubber parts, were experimentally obtained, and structural and fatigue analyses using FEM (Finite Element Method) were conducted in conjunction with spring and fatigue tests of anti-vibration rubber parts to determine the correlation between their spring and fatigue characteristics.
Technical Paper

Vibrational Analysis Method on High-frequency Electric-drive Motor Noise

2020-04-14
2020-01-0463
When a vehicle is cruising, unpleasant noise in the 4 to 5 KHz high-frequency band can be heard at the center of all seats in the vehicle cabin. In order to specify the source of this noise, the correlation between the noise and airborne noise from the outer surface of the transmission was determined, and transfer path analysis was conducted for the interior of the transmission. The results indicated that the source of the noise was the 0th-order breathing mode specific to the drive motor. To make it possible to predict this at the desk, a vibrational analysis method was proposed for drive motors made up of laminated electrical steel sheets and segment-type coils. Material properties data for the electrical steel sheets and coils was employed in the drive motor vibrational analysis model without change. The shapes of the laminated electrical steel sheets and coils were also accurately modeled.
Technical Paper

Development of Electrostatic Capacity Type Steering Sensor Using Conductive Leather

2020-04-14
2020-01-1209
Today’s progress in electronic technologies is advancing the process of making vehicles more intelligent, and this is making driving safer and more comfortable. In recent years, numerous vehicles equipped with high-level Advance Driving Assist System (ADAS) have been put on the market. High-level ADAS can detect impending lane deviation, and control the vehicle so that the driver does not deviate from the lane. Lane departure prevention systems are able to detect imminent departure from the road, allowing the driver to apply control to prevent lane departure. These systems possess enormous potential to reduce the number of accidents resulting from road departure, but their effectiveness is highly reliant on their level of acceptance by drivers.
Technical Paper

Residual Stress Analysis for Additive Manufactured Large Automobile Parts by Using Neutron and Simulation

2020-04-14
2020-01-1071
Metal additive manufacturing has high potential to produce automobile parts, due to its shape flexibility and unique material properties. On the other hand, residual stress which is generated by rapid solidification causes deformation, cracks and failure under building process. To avoid these problems, understanding of internal residual stress distribution is necessary. However, from the view point of measureable area, conventional residual stress measurement methods such as strain gages and X-ray diffractometers, is limited to only the surface layer of the parts. Therefore, neutron which has a high penetration capability was chosen as a probe to measure internal residual stress in this research. By using time of flight neutron diffraction facility VULCAN at Oak Ridge National Laboratory, residual stress for mono-cylinder head, which were made of aluminum alloy, was measured non-distractively. From the result of precise measurement, interior stress distribution was visualized.
Journal Article

Anisotropic Material Damage Model of Randomly Oriented Thermoplastic Composites for Crash Simulation

2020-04-14
2020-01-1305
In this research, a material model was developed that has orthotropic properties with respect to in-plane damage to support finite element strength analysis of components manufactured from a randomly oriented long-fiber thermoplastic composite. This is a composite material with randomly oriented bundles of carbon fibers that are approximately one inch in length. A macroscopic characteristic of the material is isotropic in in-plane terms, but there are differences in the tension and compression damage properties. In consideration of these characteristics, a material model was developed in which the damage evolution rate is correlated with thermodynamic force and stress triaxiality. In-plane damage was assumed to be isotropic with respect to the elements. In order to validate this material model, the results from simulation and three-point bending tests of closed-hat-section beams were compared and found to present a close correlation.
Journal Article

Multi-Scale Structural Analysis on Rubber Seal for Battery Pack

2020-04-14
2020-01-0498
A rubber sealing for a water-cooled battery pack plays a significant role to prevent water immersion into the inside of the pack. The appropriate design including the adjacent parts achieves a weight reduction of the battery pack by reducing the battery tray thickness and the quantity of bolts used in the whole battery pack. Generally, finite element analysis (FEA) is effective for the design optimization before proto-typing. However, the application to the sealing for a battery pack requires a large scale analysis, including the complicated contacts and large deformation of the rubber sealing, and results in unpractically long computation time and frequent computation errors due to the finite element distortion. A multi-scale structural analysis and the process on the rubber sealing for the battery pack has been developed to solve the above issues. This approach consists of 3 steps, which are single-unit, entire-scale and detailed structural analysis.
Technical Paper

Prediction of Ductile Fracture Propagation of High Strength Steels in Automotive Structures

2019-04-02
2019-01-1097
Initiation and propagation of ductile fractures in crashed automotive components made from high strength steels are investigated in order to understand the mechanism of fracture propagation. Fracture of these components is often prone to occur at the sheet edge in a strain concentration zone under crash deformation. The fracture then extends intricately to the inside of the structure under the influence of the local stress and strain field. In this study, a simple tensile test and a 3-point bending test of high strength steels with tensile strengths of 590 MPa and 1180 MPa are carried out. In the tensile test, a coupon having a hole and a notch is deformed in a uniaxial condition. The effect of the notch type on the strain concentration and fracture behavior are investigated by using a digital imaging strain measurement system.
Journal Article

Material and Damage Models of Randomly-Oriented Thermoplastic Composites for Crash Simulation

2019-04-02
2019-01-0814
This study developed a material model with a damage function that supports finite element analyses in crash strength analyses of beams manufactured using randomly-oriented long fiber thermoplastics composites. These materials are composites with randomly-oriented carbon tow having a fiber length of approximately one inch, and are isotropic in-plane from a macro perspective, but exhibit different damage properties for tension and compression. In the out-of-plane direction, the influence of the resin matrix properties increases, and the materials properties are similar to those of laminate materials. This means they are anisotropic materials with physical properties that differ from those in the in-plane direction. In order to verify the influence of these characteristics, the damage process was observed by three-point bending of a flat plate, which is a mixed mode that includes tension, compression, and out-of-plane shear.
Technical Paper

Research of Steering Grasping to Take over Driver from System

2018-04-03
2018-01-1068
Lane departure prevention systems are able to detect imminent departure from the road, allowing the driver to apply control to prevent lane departure. These systems possess enormous potential to reduce the number of accidents resulting from road departure, but their effectiveness is highly reliant on their level of acceptance by drivers. The effectiveness of the systems will depend on when they are providing driving assistance, what level of laxness in terms of maintaining contact with the steering wheel is allowed on the part of the driver, and what level of assistance the system provides. This paper will discuss research on the minimum necessary contact and contact strength with the steering wheel on the part of the driver when a lane departure prevention system is in operation.
Technical Paper

Study of 450-kW Ultra Power Dynamic Charging System

2018-04-03
2018-01-1343
This research sought to develop a dynamic charging system, achieving an unlimited EV cruising range by charging the EV at high power during cruising. This system would help make it possible to finish battery charging in a short time by contact with the EV while cruising and enable drivers to freely cruise their intended routes after charging. A simulation of dynamic charging conditions was conducted for ordinary autonomous cruising (i.e., ordinary EV cruising) when dynamically charging at a high power of 450-kW (DC 750 V, 600 A). This report discusses the study results of a method of building the infrastructure, as well as looking at the cruise test results and future outlook. In particular, the research clarified the conditions for achieving an unlimited vehicle cruising range with a 450-kW dynamic charging system. It also demonstrated that this system would allow battery capacities to be greatly reduced and make it possible to secure the battery supply volume and resources.
Journal Article

Strain Analysis of Belt Element-Pulley Interaction of an Automobile CVT under Actual Vehicle Speed Condition

2017-03-28
2017-01-1106
In order to improve shift response, durability and transmission efficiency of the CVT system, it is essential to precisely understand the behavior of individual belt elements. Although there have been some previous works measuring the strain or load on belt elements, they have been performed for speed ranges that are far below actual vehicle operation speeds due to limits in measurement techniques. We therefore developed measurement equipment that can be fitted on a CVT belt to enable measurement during actual CVT operation, and obtained the strain on belt elements under transient conditions including acceleration and transmission ratio shifts. The results showed that the strain peaks due to normal force on V faces of elements around the entrance and/or exit of the pulleys. The bending component of the strain fluctuated on the straight section from the secondary pulley to the primary pulley.
Journal Article

Concept for Improving Cost Effectiveness of Thermoelectric Heat Recovery Systems

2016-04-05
2016-01-0233
The practical application of heat recovery using thermoelectrics requires the realization of reasonable cost effectiveness. Therefore, a thermoelectric generator (TEG) structure that can compatibly increase efficiency and reduce cost was investigated with the aim of enhancing cost effectiveness. To increase efficiency, a method of using a vacuum space structure to reduce the TEG size was investigated to enable installation just after the close-coupled catalyzer, which is subject to many space restrictions. It was found that by making it possible to use high temperature exhaust heat, power generation efficiency can be increased to approximately twice that of the typical under floor installation. In addition, coupled simulation of heat transfer and power generation using FEM, 1D cost effectiveness simulations, and bench tests were performed with the aim of reducing cost.
Journal Article

Prediction of Fatigue Strength of Motorcycle Exhaust System Considering Vibrating and Thermal Stresses

2015-11-17
2015-32-0739
A method applicable in the design stage to predict fatigue strength of a motorcycle exhaust system was developed. In this prediction method, a vibrating stress, thermal stresses, stresses resulting from the assembling of the exhaust system components and a deterioration of fatigue strength of materials originated from high temperature were simultaneously taken into account. For the prediction of the vibrating stress, flexible multibody dynamics was applied to get modeling accuracy for vibration characteristics of the entire motorcycle and the exciting force delivered from engine vibrations. The thermal conduction analysis and the thermal deformation analysis based on finite element method (FEM) were applied for the prediction of thermal stresses in the exhaust system components. The temperature distribution on the surfaces of the exhaust system components is required for calculations of the thermal stresses.
Technical Paper

Development of Advanced Brake System for Small Motorcycles

2015-09-27
2015-01-2680
Combined Brake System for small motorcycles has been developed. In small motorcycles, some models have a hydraulic disc brake both in the front and rear wheels but many of them have a hydraulic disc front brake and a mechanical drum rear brake. Accordingly, it was necessary to develop a new system to link the hydraulic system with the mechanical system to allow an application of Combined Brake System to these models. In this paper, a CBS having a new configuration is described where a disc brake and a drum brake are linked in a simple lever structure of an input force distributor, and an inhibitor spring at the foot pedal. With this mechanism equipped, the distribution of brake forces is controlled. When a large input force is applied, a large proportion of brake force is applied to the front brake to obtain adequate deceleration. When a mild input force is applied, which is frequently operated, the brake force proportion is large in the rear compared to the front.
Technical Paper

The Development of Brake Feel with Variable Servo Ratio Control

2015-09-27
2015-01-2696
We had developed Electric Servo Brake System, which can control brake pressure accurately with a DC motor according to brake pedal force. Therefore, the system attains quality brake feeling while reflecting intentions of a driver. By the way, “Build-up” is characteristics that brake effectiveness increases in accordance with the deceleration of the vehicle, which is recognized as brake feeling with a sense of relief as not to elongate an expected braking distance at a downhill road due to large-capacity brake pad such as sports car and large vehicles. Then, we have applied the optical characteristic control to every car with Electric Servo Brake System by means of brake pressure control but not brake pad. Hereby, we confirmed that the control gives a driver the sense of relief and the reduction of pedal load on the further stepping-on of the pedal. In this paper, we describe the development of brake feel based on the control overview.
Journal Article

ERRATUM: Study of Reproducibility of Pedal Tracking and Detection Response Task to Assess Driver Distraction

2015-04-14
2015-01-1388.01
1. On page 111, the authors have described a method to assess driver distraction. In this method, participants maintained a white square size on a forward display by using a game gas pedal of like in car-following situation. The size of the white square is determined by calculating the distance to a virtual lead vehicle. The formulas to correct are used to explain variation of acceleration of the virtual lead vehicle. The authors inadvertently incorporated old formulas they had used previously. In the experiments discussed in the article, the corrected formulas were used. Therefore, there is no change in the results. The following from the article:
Journal Article

Strength Analysis of CFRP Composite Material Considering Inter-Laminar Fractures

2015-04-14
2015-01-0694
The strength characteristic of CFRP composite materials is often dependent on the internal micro-structural fracture mode. When performing a simulation on composite structures, it is necessary to take the fracture mode into account, especially in an automobile body structure with a complex three-dimensional shape, where inter-ply fractures tend to appear due to out-of-plane load inputs. In this paper, an energy-based inter-ply fracture model with fracture toughness criteria, and an intra-ply fracture model proposed by Ladeveze et al. were explained. FEM analyses were performed on three-dimensional test specimens applying both fracture models and the simulated results were compared with experimental ones. Reproducibility of the fracture mode was confirmed and the importance of combining both models was discussed.
Journal Article

Study of Reproducibility of Pedal Tracking and Detection Response Task to Assess Driver Distraction

2015-04-14
2015-01-1388
We have developed a bench test method to assess driver distraction caused by the load of using infotainment systems. In a previous study, we found that this method can be used to assess the task loads of both visual-manual tasks and auditory-vocal tasks. The task loads are assessed using the performances of both pedal tracking task (PT) and detection response task (DRT) while performing secondary tasks. We can perform this method using simple equipment such as game pedals and a PC. The aim of this study is to verify the reproducibility of the PT-DRT. Experiments were conducted in three test environments in which test regions, experimenters and participants differed from each other in the US, and the test procedures were almost the same. We set two types of visual-manual tasks and two types of auditory-vocal tasks as secondary tasks and set two difficulties for each task type to vary the level of task load.
Technical Paper

A Statistical Tire Model Concept - Applications to Vehicle Development

2015-04-14
2015-01-1578
The tires are one of the most important parts of the vehicle chassis, as they significantly influence aspects such as vehicle's directional stability, braking performance, ride comfort, NVH, and fuel consumption. The tires are also a part whose size affects the vehicle's essential specifications such as wheelbase and track width. The size of the tires should therefore be determined in the initial stage of vehicle development, taking into account whether the size allows the vehicle to achieve the targeted overall performance. In estimations of vehicle performance, computer simulation plays more of an important role, and simulated tire models are designed to reproduce the measured tire characteristics of existing tires. But to estimate the chassis performance with various tire sizes or with tires of uncommon sizes, the prevailing modeling approach, “individual models for individual tires,” would not function well because of limited ability to expand tire models to unfamiliar sizes.
Technical Paper

The Structure of an Advanced Independent Rear Toe-Control System

2015-04-14
2015-01-1499
Honda announced an independent right and left rear toe control system (first generation) in 2013 and presented it as the world's first. As stated in a previous paper, “Independent Left and Right Rear Toe Control System,” with this system Honda has achieved a balance between an enjoyable driving experience in which handling is performed at the driver's will (“INOMAMA” handling) and stable driving performance.(1) This first generation is optimally designed to the vehicle specifications such as suspension axial force and steering gear ratio of the vehicle to which the system is applied. For more widespread application of independent rear toe control technology, a next generation system (second generation) has been developed, which achieves both cost reduction and flexible system performance which can be adapted to a variety of vehicles. The system development began by setting the required target performance with consideration for adaptation to various car models.
X