Refine Your Search

Topic

Author

Search Results

Journal Article

Full-Scale Validation of Modified Pedestrian Dummy

2023-04-11
2023-01-0786
Injury assessment by using a whole-body pedestrian dummy is one of the ways to investigate pedestrian safety performance of vehicles. The authors’ group has improved the biofidelity of the lower limb and the pelvis of the mid-sized male pedestrian dummy (POLAR III) by modifying those components. This study aims to evaluate the biofidelity of the whole-body response of the modified dummy in full-scale impact tests. The pelvis, the thigh and the leg of POLAR III have been modified in a past study by optimizing their compliance by means of the installation of plastic and rubber parts, which were used for the tests. The generic buck developed for the assessment of pedestrian dummy whole-body impact response and specified in SAE J3093 was used for this study. The buck representing the geometry of a small family car is comprised of six parts: lower bumper, bumper, grille, hood edge, hood and windshield.
Technical Paper

Analysis of CVT Element Vibration by In-Situ Measurement

2020-04-14
2020-01-0906
When the belt contacts a pulley in a pushing belt-type CVT, vibration is generated by frictional force due to rubbing between the individual elements that are components of the belt, which is said to increase wear and noise. The authors speculated that the source of that vibration is misalignment of the secondary pulley and primary pulley V-surfaces. To verify that phenomenon, a newly developed micro data logger was attached to an element of a mass-produced metal pushing V-belt CVT and the acceleration was measured at rotations equal to those at drive (1000 to 2500 r/m). In addition, the results of calculations using a behavior analysis model showed that changes in pulley misalignment influence element vibration, and that the magnitude of the vibration is correlated to the change in the metal pushing V-belt alignment immediately before the element contacts the pulley.
Technical Paper

Development of Electrostatic Capacity Type Steering Sensor Using Conductive Leather

2020-04-14
2020-01-1209
Today’s progress in electronic technologies is advancing the process of making vehicles more intelligent, and this is making driving safer and more comfortable. In recent years, numerous vehicles equipped with high-level Advance Driving Assist System (ADAS) have been put on the market. High-level ADAS can detect impending lane deviation, and control the vehicle so that the driver does not deviate from the lane. Lane departure prevention systems are able to detect imminent departure from the road, allowing the driver to apply control to prevent lane departure. These systems possess enormous potential to reduce the number of accidents resulting from road departure, but their effectiveness is highly reliant on their level of acceptance by drivers.
Technical Paper

Research of Steering Grasping to Take over Driver from System

2018-04-03
2018-01-1068
Lane departure prevention systems are able to detect imminent departure from the road, allowing the driver to apply control to prevent lane departure. These systems possess enormous potential to reduce the number of accidents resulting from road departure, but their effectiveness is highly reliant on their level of acceptance by drivers. The effectiveness of the systems will depend on when they are providing driving assistance, what level of laxness in terms of maintaining contact with the steering wheel is allowed on the part of the driver, and what level of assistance the system provides. This paper will discuss research on the minimum necessary contact and contact strength with the steering wheel on the part of the driver when a lane departure prevention system is in operation.
Technical Paper

Influence of Shock Absorber Friction on Vehicle Ride-Comfort Studied by Numerical Simulation Using Classical Single Wheel Model

2018-04-03
2018-01-0692
Along with the suspension improvement in these two decades, it is well known that the suspension friction force became one of major parameters to affect ride comfort performance. However, it was difficult to carry out quantitative prediction on ride comfort improvement against friction force change with high correlation. It was difficult to analyze correlation between actual vehicle performance and simulation since there were difficulties in controlling damping force and friction individually. On the other hand, magneto-rheological shock absorber (MR Shock) has had several applications and widely spread to passenger vehicles. The large variation and high response of damping force especially in slow piston speed region contributes to achieve an excellent vehicle dynamics performance. However, MR Shock shows the high friction characteristics, due to the unique sliding regime of internal parts. It is said that this high friction characteristic is causing obstacles in ride-comfort.
Technical Paper

Acceleration of Iterative Vibration Analysis for Form Changes in Large Degrees-of-Freedom Engine Model

2018-04-03
2018-01-1290
Operational analysis of automotive engines using flexible multi-body dynamics is increasingly important from the viewpoint of multi-objective optimization as it can predict not only vibration, but also stress and friction at the same time. Still, the finite element (FE) models used in this analysis have large degrees-of-freedom, so iterative calculation takes a lot of time when there is form change. This research therefore describes a technique that applies a modal differential substructure method (a technique that reduces the degrees of freedom in a FE model) that can simulate form changes in FE models by changing modal mass and modal stiffness in reduced models. By using this method, non-parametric form change in FE model can be parametrically simulated, so it is possible to speed up repeated vibration calculations. In the proposed method, FE model is finely divided for each form change design area, and a reduced model of that divided structure is created.
Technical Paper

Study of 450-kW Ultra Power Dynamic Charging System

2018-04-03
2018-01-1343
This research sought to develop a dynamic charging system, achieving an unlimited EV cruising range by charging the EV at high power during cruising. This system would help make it possible to finish battery charging in a short time by contact with the EV while cruising and enable drivers to freely cruise their intended routes after charging. A simulation of dynamic charging conditions was conducted for ordinary autonomous cruising (i.e., ordinary EV cruising) when dynamically charging at a high power of 450-kW (DC 750 V, 600 A). This report discusses the study results of a method of building the infrastructure, as well as looking at the cruise test results and future outlook. In particular, the research clarified the conditions for achieving an unlimited vehicle cruising range with a 450-kW dynamic charging system. It also demonstrated that this system would allow battery capacities to be greatly reduced and make it possible to secure the battery supply volume and resources.
Technical Paper

Development of High-Power-Density DC-DC Converter Using Coupled Inductors for Clarity Plug-In Hybrid

2018-04-03
2018-01-0458
Honda has developed an electric powertrain for a 2017 plug-in hybrid vehicle using its second-generation SPORT HYBRID i-MMD powertrain system as a base. The application of the newly developed powertrain system realizes a long all-electric range (AER), allowing operation as an EV for almost all everyday driving scenarios, with dynamic performance making it possible for the vehicle to operate as an EV across the entire speed range, up to a maximum speed of 100 mph. The amount of assist provided by power from the batteries during acceleration has been increased, helping to downsize the engine while also balancing powerful acceleration with quietness achieved by controlling racing of the engine. In order to realize this EV performance with the second-generation SPORT HYBRID i-MMD system as the base, it was necessary to increase the power output of the DC-DC converter, taking restrictions on space into consideration.
Technical Paper

The Development of Brake Feel with Variable Servo Ratio Control

2015-09-27
2015-01-2696
We had developed Electric Servo Brake System, which can control brake pressure accurately with a DC motor according to brake pedal force. Therefore, the system attains quality brake feeling while reflecting intentions of a driver. By the way, “Build-up” is characteristics that brake effectiveness increases in accordance with the deceleration of the vehicle, which is recognized as brake feeling with a sense of relief as not to elongate an expected braking distance at a downhill road due to large-capacity brake pad such as sports car and large vehicles. Then, we have applied the optical characteristic control to every car with Electric Servo Brake System by means of brake pressure control but not brake pad. Hereby, we confirmed that the control gives a driver the sense of relief and the reduction of pedal load on the further stepping-on of the pedal. In this paper, we describe the development of brake feel based on the control overview.
Journal Article

ERRATUM: Study of Reproducibility of Pedal Tracking and Detection Response Task to Assess Driver Distraction

2015-04-14
2015-01-1388.01
1. On page 111, the authors have described a method to assess driver distraction. In this method, participants maintained a white square size on a forward display by using a game gas pedal of like in car-following situation. The size of the white square is determined by calculating the distance to a virtual lead vehicle. The formulas to correct are used to explain variation of acceleration of the virtual lead vehicle. The authors inadvertently incorporated old formulas they had used previously. In the experiments discussed in the article, the corrected formulas were used. Therefore, there is no change in the results. The following from the article:
Journal Article

Fracture Prediction for Automotive Bodies Using a Ductile Fracture Criterion and a Strain-Dependent Anisotropy Model

2015-04-14
2015-01-0567
In order to reduce automobile body weight and improve crashworthiness, the use of high-strength steels has increased greatly in recent years. An optimal combination of both crash safety performance and lightweight structure has been a major challenge in automobile body engineering. In this study, the Cockcroft-Latham fracture criterion was applied to predict the fracture of high-strength steels. Marciniak-type biaxial stretching tests for high-strength steels were performed to measure the material constant of the Cockcroft-Latham fracture criterion. Furthermore, in order to improve the simulation accuracy, local anisotropic parameters based on the plastic strain (strain dependent model of anisotropy) were measured using the digital image grid method and were incorporated into Hill's anisotropic yield condition by the authors. In order to confirm the validity of the Cockcroft-Latham fracture criterion, uniaxial tensile tests were performed.
Journal Article

Research on Mechanism of Change in Suspension Transfer Force in Relation to Low-Frequency Road Noise

2015-04-14
2015-01-0667
Cabin quietness is one of the important factors for product marketability. In particular, the importance of reducing road noise is increasing in recent years. Methods that reduce acoustic sensitivity as well as those that reduce the force transferred from the suspension to the body (the suspension transfer force) are used as means of reducing road noise. Reduction of the compliance of the body suspension mounting points has been widely used as a method of reducing acoustic sensitivity. However, there were cases where even though this method reduced acoustic sensitivity, road noise did not decrease. This mechanism remained unclear. This study focused on the suspension transfer force and analyzed this mechanism of change using the transfer function synthesis method. The results showed that the balance between the body's suspension mounting points, suspension bush, and suspension arm-tip compliance is an important factor influencing the change in suspension transfer force.
Journal Article

Study of Reproducibility of Pedal Tracking and Detection Response Task to Assess Driver Distraction

2015-04-14
2015-01-1388
We have developed a bench test method to assess driver distraction caused by the load of using infotainment systems. In a previous study, we found that this method can be used to assess the task loads of both visual-manual tasks and auditory-vocal tasks. The task loads are assessed using the performances of both pedal tracking task (PT) and detection response task (DRT) while performing secondary tasks. We can perform this method using simple equipment such as game pedals and a PC. The aim of this study is to verify the reproducibility of the PT-DRT. Experiments were conducted in three test environments in which test regions, experimenters and participants differed from each other in the US, and the test procedures were almost the same. We set two types of visual-manual tasks and two types of auditory-vocal tasks as secondary tasks and set two difficulties for each task type to vary the level of task load.
Technical Paper

The Structure of an Advanced Independent Rear Toe-Control System

2015-04-14
2015-01-1499
Honda announced an independent right and left rear toe control system (first generation) in 2013 and presented it as the world's first. As stated in a previous paper, “Independent Left and Right Rear Toe Control System,” with this system Honda has achieved a balance between an enjoyable driving experience in which handling is performed at the driver's will (“INOMAMA” handling) and stable driving performance.(1) This first generation is optimally designed to the vehicle specifications such as suspension axial force and steering gear ratio of the vehicle to which the system is applied. For more widespread application of independent rear toe control technology, a next generation system (second generation) has been developed, which achieves both cost reduction and flexible system performance which can be adapted to a variety of vehicles. The system development began by setting the required target performance with consideration for adaptation to various car models.
Technical Paper

Elastokinematic Characteristics of Torsion Beam Suspensions

2015-04-14
2015-01-1497
Torsion beam suspensions are lightweight and low in cost, and they are therefore frequently used as the rear suspensions of small front-wheel drive vehicles. However, it is difficult to predict their characteristics and to satisfy performance targets in the early stages of development in particular, because the various aspects of performance required of a suspension must be achieved by a single structure. A great deal of research has been conducted into the cross-sectional shape of the beam section; however, this paper focuses on the effect of the properties of the trailing arms on suspension characteristics. Two similar test torsion beam suspensions differing only in the rigidity of the trailing arms were fabricated, and kinematics and compliance (K&C) tests were conducted using a 3D measurement system. The lateral compliance test showed the anticipated result that change in toe and camber is greater in the suspension with lower rigidity trailing arms.
Technical Paper

Improvement and Validation of the Lower Limb and the Pelvis for a Pedestrian Dummy

2015-04-14
2015-01-1471
The evaluation of pedestrian safety performance of vehicles required by regulations and new car assessment programs (NCAPs) have been conducted. However, the behavior of a pedestrian in an actual car-pedestrian accident is complex. In order to investigate injuries to the pedestrian lower body, the biofidelity of the lower limb and the pelvis of a pedestrian dummy called the POLAR II had been improved in past studies to develop a prototype of the next generation dummy called the POLAR III. The biofidelity of the thigh and the leg of the POLAR III prototype has been evaluated by means of 3-point bending. However, the inertial properties of these parts still needed to be adjusted to match those of a human. The biofidelity of the pelvis of the POLAR III prototype has been evaluated in lateral compression. Although the experiment using PMHSs (Post Mortem Human Subjects) was conducted in dynamic condition, the dummy tests were performed only in quasi-static condition.
Technical Paper

Investigation on an Injury Criterion Related to Traumatic Brain Injury Primarily Induced by Head Rotation

2015-04-14
2015-01-1439
The high frequency of fatal head injuries is one of the important issues in traffic safety, and Traumatic Brain Injuries (TBIs) without skull fracture account for approximately half of them in both occupant and pedestrian crashes. In order to evaluate vehicle safety performance for TBIs in these crashes using anthropomorphic test dummies (ATDs), a comprehensive injury criterion calculated from the rotational rigid motion of the head is required. While many studies have been conducted to investigate such an injury criterion with a focus on diffuse brain injuries in occupant crashes, there have been only a limited number of studies focusing on pedestrian impacts. The objective of this study is to develop a comprehensive injury criterion based on the rotational rigid body motion of the head suitable for both occupant and pedestrian crashes.
Technical Paper

Conceptual Simulation for Plug-In HEV at Early Stage of Development

2015-04-14
2015-01-0980
This study aims to build a conceptual simulation used at the early stage of PHEV development. This simulation enables to design vehicle concept and fundamental architecture with regard to fuel economy, vehicle acceleration and electric range. The model based on forward-looking method comprises of plant-model and controller-model which are made by one-dimensional simulation tool “GT-SUITE” and Matlab/SIMULINK respectively. In order to automatically couple between them and to implement iterative calculations of SOC (State-of-Charge) convergence, optimization and automation tool “modeFRONTIER” was used. As a case study of this simulation, we adopted series-parallel type plug-in hybrid electric vehicle (PHEV) and demonstrated the results on fuel economy of a legislative driving cycle and 0-60mph vehicle acceleration. Moreover, procedures to identify component specifications meeting vehicle targets and requirements at the early stage of vehicle development were concretely described.
Technical Paper

Influence of Introduction of Oblique Moving Deformable Barrier Test on Collision Compatibility

2015-04-14
2015-01-1492
The National Highway Traffic Safety Administration (NHTSA) has developed moving deformable barriers for vehicle crash test procedures to assess vehicle and occupant response in partial overlap vehicle crashes. For this paper, based on the NHTSA Oblique Test procedure, a mid-size sedan was tested. The intent of this research was to provide insight into possible design changes to enhance the oblique collision performance of vehicles. The test results predicted high injury risk for BrIC, chest deflection, and the lower extremities. In this particular study, reducing lower extremity injuries has been focused on. Traditionally, lower extremity injuries have been reduced by limiting the intrusion of the lower region of the cabin's toe-board. In this study, it is assumed that increasing the energy absorbed within the engine compartment is more efficient than reinforcing the passenger compartment as a method to reduce lower extremity injuries.
Technical Paper

Investigation on Generational Difference of Intracranial Responses Related to Traumatic Brain Injuries Using Age-Specific Human Head/Brain FE Models

2014-04-01
2014-01-0485
The high frequency of fatal head injuries of elderly people in traffic accidents is one of the important issues in Japan. One of the causes may be vulnerability of the aged brain. While a human head/brain FE model is a useful tool to investigate head injury mechanism, there has not been a research result using a model considering the structural and qualitative changes of the brain by aging. The objective of this study was to clarify the generational difference of intracranial responses related to traumatic brain injuries (TBI) under impact loading. In this study, the human head/brain FE models in their twenties (20s) and seventies (70s) were used. They were developed by reflecting the age-specific characteristics, such as shape/size and stiffness of brain matter and blood vessels, to the baseline model developed by Global Human Body Models Consortium (GHBMC) LLC.
X