Refine Your Search

Topic

Author

Search Results

Journal Article

Full-Scale Validation of Modified Pedestrian Dummy

2023-04-11
2023-01-0786
Injury assessment by using a whole-body pedestrian dummy is one of the ways to investigate pedestrian safety performance of vehicles. The authors’ group has improved the biofidelity of the lower limb and the pelvis of the mid-sized male pedestrian dummy (POLAR III) by modifying those components. This study aims to evaluate the biofidelity of the whole-body response of the modified dummy in full-scale impact tests. The pelvis, the thigh and the leg of POLAR III have been modified in a past study by optimizing their compliance by means of the installation of plastic and rubber parts, which were used for the tests. The generic buck developed for the assessment of pedestrian dummy whole-body impact response and specified in SAE J3093 was used for this study. The buck representing the geometry of a small family car is comprised of six parts: lower bumper, bumper, grille, hood edge, hood and windshield.
Technical Paper

Engine Sound Design Process with Utilization of Industrial Styling Design

2020-04-14
2020-01-0402
This report will introduce a new engine sound design concept and propose a design process. In sound design for automotive development of popular vehicles, it is common to seek to enhance the state of the existing marketed vehicle in order to meet further demands from customers. For standout models such as sports vehicles and flagship vehicles, sound design commonly reflects the sound ideals of the manufacturer’s branding or engineers. Each case has common point that the sound direction is determined by itself clearly. However, in this way, it is difficult to create abstract concept sound. Because it is no direction for the sound. Therefore, this paper examines ways to achieve a new sound that satisfies a sound concept based on an unprecedented abstract concept “wood”. The reason why sound concept is “wood”, it is the difficult to make as a new engine sound and good study to reveal usefulness of new sound design process.
Technical Paper

Development of Electrostatic Capacity Type Steering Sensor Using Conductive Leather

2020-04-14
2020-01-1209
Today’s progress in electronic technologies is advancing the process of making vehicles more intelligent, and this is making driving safer and more comfortable. In recent years, numerous vehicles equipped with high-level Advance Driving Assist System (ADAS) have been put on the market. High-level ADAS can detect impending lane deviation, and control the vehicle so that the driver does not deviate from the lane. Lane departure prevention systems are able to detect imminent departure from the road, allowing the driver to apply control to prevent lane departure. These systems possess enormous potential to reduce the number of accidents resulting from road departure, but their effectiveness is highly reliant on their level of acceptance by drivers.
Technical Paper

Development of Intelligent Power Unit for 2018 Model Year Accord Hybrid

2019-04-02
2019-01-0592
A compact intelligent power unit capable of being installed under the rear seating was developed for the 2018 model year Accord Hybrid that is to be equipped with the SPORT HYBRID Intelligent Multi Mode Drive (i-MMD) system. The space under the rear seat features multiple constraints on dimensions. In the longitudinal direction, it is necessary to attempt to help ensure occupant leg room and to position the fuel tank; in the vertical direction, it is necessary to attempt to help ensure occupants comfort and a minimum ground clearance; and in the lateral direction, it is necessary to avoid the position of the body side frames and the penetrating section of the exhaust pipe. The technologies described below were applied in order to reduce the size of components, making it possible to position the IPU amid these constraint conditions.
Technical Paper

A Study of Vibration Reducing Effect on Vehicle Dynamics by Hydraulic Damper on Body Structure

2019-04-02
2019-01-0171
This research investigated the mechanism of the effects of hydraulic dampers, which are attached to vehicle body structures and are known by experience to suppress vehicle body vibration and enhance ride comfort and steering stability. In investigating the mechanism, we employed quantitative data from riding tests, and analytical data from simplified vibration models. In our assessment of ride comfort in riding tests using vehicles equipped with hydraulic dampers, we confirmed effects reducing body floor vibration in the low-frequency range. We also confirmed vibration reduction in unsprung suspension parts to be a notable mechanical characteristic which merits close attention in all cases. To investigate the mechanism of the vibration reduction effect in unsprung parts, we considered a simplified vibration model, in which the engine and unsprung parts, which are rigid, are linked to the vehicle body, which is an elastic body equipped with hydraulic dampers.
Technical Paper

Prediction of Ductile Fracture Propagation of High Strength Steels in Automotive Structures

2019-04-02
2019-01-1097
Initiation and propagation of ductile fractures in crashed automotive components made from high strength steels are investigated in order to understand the mechanism of fracture propagation. Fracture of these components is often prone to occur at the sheet edge in a strain concentration zone under crash deformation. The fracture then extends intricately to the inside of the structure under the influence of the local stress and strain field. In this study, a simple tensile test and a 3-point bending test of high strength steels with tensile strengths of 590 MPa and 1180 MPa are carried out. In the tensile test, a coupon having a hole and a notch is deformed in a uniaxial condition. The effect of the notch type on the strain concentration and fracture behavior are investigated by using a digital imaging strain measurement system.
Journal Article

Development of Motor with Heavy Rare Earth-Free Magnet for Two-Motor Hybrid System

2019-04-02
2019-01-0600
Conventional HEV motors use neodymium magnets with added heavy rare earths, to realize high output and size reduction. However, deposits of heavy rare earths such as Dysprosium (Dy) and Terbium (Tb) are unevenly distributed, so it is important to reduce the amount used, because of supply issue and material cost. In this paper, the application of a heavy rare earth-free magnet is considered on the new motor for a two-motor hybrid system. Compared to conventional neodymium magnets, heavy rare earth free magnets tend to have low coercivity. Also, heavy rare earth-free magnet have low thermal durability, so it is not easy to apply them to motors for a two-motor hybrid system, which requires high output and small size. The motor requires twice as much torque and six times output than one-motor hybrid system. Increase demagnetization resistance and magnet cooling performance is studied by development of the new motor.
Technical Paper

Research of Steering Grasping to Take over Driver from System

2018-04-03
2018-01-1068
Lane departure prevention systems are able to detect imminent departure from the road, allowing the driver to apply control to prevent lane departure. These systems possess enormous potential to reduce the number of accidents resulting from road departure, but their effectiveness is highly reliant on their level of acceptance by drivers. The effectiveness of the systems will depend on when they are providing driving assistance, what level of laxness in terms of maintaining contact with the steering wheel is allowed on the part of the driver, and what level of assistance the system provides. This paper will discuss research on the minimum necessary contact and contact strength with the steering wheel on the part of the driver when a lane departure prevention system is in operation.
Technical Paper

Influence of Shock Absorber Friction on Vehicle Ride-Comfort Studied by Numerical Simulation Using Classical Single Wheel Model

2018-04-03
2018-01-0692
Along with the suspension improvement in these two decades, it is well known that the suspension friction force became one of major parameters to affect ride comfort performance. However, it was difficult to carry out quantitative prediction on ride comfort improvement against friction force change with high correlation. It was difficult to analyze correlation between actual vehicle performance and simulation since there were difficulties in controlling damping force and friction individually. On the other hand, magneto-rheological shock absorber (MR Shock) has had several applications and widely spread to passenger vehicles. The large variation and high response of damping force especially in slow piston speed region contributes to achieve an excellent vehicle dynamics performance. However, MR Shock shows the high friction characteristics, due to the unique sliding regime of internal parts. It is said that this high friction characteristic is causing obstacles in ride-comfort.
Technical Paper

Study of 450-kW Ultra Power Dynamic Charging System

2018-04-03
2018-01-1343
This research sought to develop a dynamic charging system, achieving an unlimited EV cruising range by charging the EV at high power during cruising. This system would help make it possible to finish battery charging in a short time by contact with the EV while cruising and enable drivers to freely cruise their intended routes after charging. A simulation of dynamic charging conditions was conducted for ordinary autonomous cruising (i.e., ordinary EV cruising) when dynamically charging at a high power of 450-kW (DC 750 V, 600 A). This report discusses the study results of a method of building the infrastructure, as well as looking at the cruise test results and future outlook. In particular, the research clarified the conditions for achieving an unlimited vehicle cruising range with a 450-kW dynamic charging system. It also demonstrated that this system would allow battery capacities to be greatly reduced and make it possible to secure the battery supply volume and resources.
Journal Article

Development of New Hydrogen Fueling Method for Fuel Cell Motorcycle

2017-03-28
2017-01-1184
A new hydrogen fueling protocol named MC Formula Moto was developed for fuel cell motorcycles (FCM) with a smaller hydrogen storage capacity than those of light duty FC vehicles (FCV) currently covered in the SAE J2601 standard (over than 2kg storage). Building on the MC Formula based protocol from the 2016 SAE J2601 standard, numerous new techniques were developed and tested to accommodate the smaller storage capacity: an initial pressure estimation using the connection pulse, a fueling time counter which begins the main fueling time prior to the connection pulse, a pressure ramp rate fallback control, and other techniques. The MC Formula Moto fueling protocol has the potential to be implemented at current hydrogen stations intended for fueling of FCVs using protocols such as SAE J2601. This will allow FCMs to use the existing and rapidly growing hydrogen infrastructure, precluding the need for exclusive dispensers or stations.
Technical Paper

The Development of Brake Feel with Variable Servo Ratio Control

2015-09-27
2015-01-2696
We had developed Electric Servo Brake System, which can control brake pressure accurately with a DC motor according to brake pedal force. Therefore, the system attains quality brake feeling while reflecting intentions of a driver. By the way, “Build-up” is characteristics that brake effectiveness increases in accordance with the deceleration of the vehicle, which is recognized as brake feeling with a sense of relief as not to elongate an expected braking distance at a downhill road due to large-capacity brake pad such as sports car and large vehicles. Then, we have applied the optical characteristic control to every car with Electric Servo Brake System by means of brake pressure control but not brake pad. Hereby, we confirmed that the control gives a driver the sense of relief and the reduction of pedal load on the further stepping-on of the pedal. In this paper, we describe the development of brake feel based on the control overview.
Journal Article

ERRATUM: Study of Reproducibility of Pedal Tracking and Detection Response Task to Assess Driver Distraction

2015-04-14
2015-01-1388.01
1. On page 111, the authors have described a method to assess driver distraction. In this method, participants maintained a white square size on a forward display by using a game gas pedal of like in car-following situation. The size of the white square is determined by calculating the distance to a virtual lead vehicle. The formulas to correct are used to explain variation of acceleration of the virtual lead vehicle. The authors inadvertently incorporated old formulas they had used previously. In the experiments discussed in the article, the corrected formulas were used. Therefore, there is no change in the results. The following from the article:
Journal Article

Strength Analysis of CFRP Composite Material Considering Inter-Laminar Fractures

2015-04-14
2015-01-0694
The strength characteristic of CFRP composite materials is often dependent on the internal micro-structural fracture mode. When performing a simulation on composite structures, it is necessary to take the fracture mode into account, especially in an automobile body structure with a complex three-dimensional shape, where inter-ply fractures tend to appear due to out-of-plane load inputs. In this paper, an energy-based inter-ply fracture model with fracture toughness criteria, and an intra-ply fracture model proposed by Ladeveze et al. were explained. FEM analyses were performed on three-dimensional test specimens applying both fracture models and the simulated results were compared with experimental ones. Reproducibility of the fracture mode was confirmed and the importance of combining both models was discussed.
Journal Article

Research on Mechanism of Change in Suspension Transfer Force in Relation to Low-Frequency Road Noise

2015-04-14
2015-01-0667
Cabin quietness is one of the important factors for product marketability. In particular, the importance of reducing road noise is increasing in recent years. Methods that reduce acoustic sensitivity as well as those that reduce the force transferred from the suspension to the body (the suspension transfer force) are used as means of reducing road noise. Reduction of the compliance of the body suspension mounting points has been widely used as a method of reducing acoustic sensitivity. However, there were cases where even though this method reduced acoustic sensitivity, road noise did not decrease. This mechanism remained unclear. This study focused on the suspension transfer force and analyzed this mechanism of change using the transfer function synthesis method. The results showed that the balance between the body's suspension mounting points, suspension bush, and suspension arm-tip compliance is an important factor influencing the change in suspension transfer force.
Journal Article

Vibration Reduction in Motors for the SPORT HYBRID SH-AWD

2015-04-14
2015-01-1206
A new motor has been developed that combines the goals of greater compactness, increased power and a quiet drive. This motor is an interior permanent magnet synchronous motor (IPM motor) that combines an interior permanent magnet rotor and a stator with concentrated windings. In addition, development of the motor focused on the slot combination, the shape of the magnetic circuits and the control method all designed to reduce motor noise and vibration. An 8-pole rotor, 12-slot stator combination was employed, and a gradually enlarged air gap configuration was used in the magnetic circuits. The gradually enlarged air gap brings the centers of the rotor and the stator out of alignment, changing the curvature, and continually changing the amount of air gap as the rotor rotates. The use of the gradually enlarged air gap brings torque degradation to a minimum, and significantly reduces torque fluctuation and iron loss of rotor and stator.
Journal Article

Study of Reproducibility of Pedal Tracking and Detection Response Task to Assess Driver Distraction

2015-04-14
2015-01-1388
We have developed a bench test method to assess driver distraction caused by the load of using infotainment systems. In a previous study, we found that this method can be used to assess the task loads of both visual-manual tasks and auditory-vocal tasks. The task loads are assessed using the performances of both pedal tracking task (PT) and detection response task (DRT) while performing secondary tasks. We can perform this method using simple equipment such as game pedals and a PC. The aim of this study is to verify the reproducibility of the PT-DRT. Experiments were conducted in three test environments in which test regions, experimenters and participants differed from each other in the US, and the test procedures were almost the same. We set two types of visual-manual tasks and two types of auditory-vocal tasks as secondary tasks and set two difficulties for each task type to vary the level of task load.
Technical Paper

The Structure of an Advanced Independent Rear Toe-Control System

2015-04-14
2015-01-1499
Honda announced an independent right and left rear toe control system (first generation) in 2013 and presented it as the world's first. As stated in a previous paper, “Independent Left and Right Rear Toe Control System,” with this system Honda has achieved a balance between an enjoyable driving experience in which handling is performed at the driver's will (“INOMAMA” handling) and stable driving performance.(1) This first generation is optimally designed to the vehicle specifications such as suspension axial force and steering gear ratio of the vehicle to which the system is applied. For more widespread application of independent rear toe control technology, a next generation system (second generation) has been developed, which achieves both cost reduction and flexible system performance which can be adapted to a variety of vehicles. The system development began by setting the required target performance with consideration for adaptation to various car models.
Technical Paper

Elastokinematic Characteristics of Torsion Beam Suspensions

2015-04-14
2015-01-1497
Torsion beam suspensions are lightweight and low in cost, and they are therefore frequently used as the rear suspensions of small front-wheel drive vehicles. However, it is difficult to predict their characteristics and to satisfy performance targets in the early stages of development in particular, because the various aspects of performance required of a suspension must be achieved by a single structure. A great deal of research has been conducted into the cross-sectional shape of the beam section; however, this paper focuses on the effect of the properties of the trailing arms on suspension characteristics. Two similar test torsion beam suspensions differing only in the rigidity of the trailing arms were fabricated, and kinematics and compliance (K&C) tests were conducted using a 3D measurement system. The lateral compliance test showed the anticipated result that change in toe and camber is greater in the suspension with lower rigidity trailing arms.
Technical Paper

Improvement and Validation of the Lower Limb and the Pelvis for a Pedestrian Dummy

2015-04-14
2015-01-1471
The evaluation of pedestrian safety performance of vehicles required by regulations and new car assessment programs (NCAPs) have been conducted. However, the behavior of a pedestrian in an actual car-pedestrian accident is complex. In order to investigate injuries to the pedestrian lower body, the biofidelity of the lower limb and the pelvis of a pedestrian dummy called the POLAR II had been improved in past studies to develop a prototype of the next generation dummy called the POLAR III. The biofidelity of the thigh and the leg of the POLAR III prototype has been evaluated by means of 3-point bending. However, the inertial properties of these parts still needed to be adjusted to match those of a human. The biofidelity of the pelvis of the POLAR III prototype has been evaluated in lateral compression. Although the experiment using PMHSs (Post Mortem Human Subjects) was conducted in dynamic condition, the dummy tests were performed only in quasi-static condition.
X