Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

New 2.0 L Inline 4-Cylinder Gasoline Direct Injection Engine

2023-04-11
2023-01-0400
Honda has developed a new hybrid system targeting the C and D segments that aims for the latest environmental performance, high fuel economy, and enhanced acceleration feeling in driving. The new engine to be applied to this new hybrid system has been developed with the goal of expanding the high thermal efficiency range, realizing the latest environmental performance, and high quietness. The new engine has adopted the Atkinson cycle and cooled exhaust gas recirculation (EGR) carried over from the previous model [1], and employed an in-cylinder direct fuel injection system with fuel injection pressure of 35 MPa. The combustion chamber and ports have been newly designed to match the fuel system changes. By realizing high-speed combustion, the engine realized a high compression ratio with the mechanical compression ratio of 13.9.
Journal Article

Pad Correction Estimation around 5 Belt Wind Tunnel Wheel Belts Using Pressure Tap Measurement and Mathematical Pressure Distribution Model

2022-03-29
2022-01-0902
5 belt wind tunnels are the most common facility to conduct the experimental aerodynamics development for production cars. Among aerodynamic properties, usually drag is the most important development target, but lift force and its front/rear balance is also important for vehicle dynamics. Related to the lift measurement, it is known that the “pad correction”, the correction in the lift measurement values for the undesirable aerodynamic force acting on wheel belt surface around the tire contact patch, must be accounted. Due to the pad correction measurement difficulties, it is common to simply subtract a fixed amount of lift values from measured lift force. However, this method is obviously not perfect as the pad corrections are different for differing vehicle body shapes, aerodynamic configurations, tire sizes and shapes.
Technical Paper

On Road Fuel Economy Impact by the Aerodynamic Specifications under the Natural Wind

2020-04-14
2020-01-0678
According to some papers, the label fuel economy and the actual fuel economy experienced by the customers may exhibit a gap. One of the reasons may stem from the aerodynamic drag variations due to the natural wind. The fuel consumption is measured through bench test under several driving modes by using the road load as input condition. The road load is measured through the coast down test under less wind ambient conditions as determined by each regulation. The present paper aims to analyze the natural wind conditions encountered by the vehicle on public roads and to operate a comparison between the fuel consumptions and the driving energy. In this paper, the driving energy is calculated by the aerodynamic drag from the natural wind specifications and driving conditions. This driving energy and the fuel consumptions show good correlation. The fuel consumption is obtained from the vehicle Engine control unit(ECU) data.
Technical Paper

Analysis of the Pressure Drop Increase Mechanism by Ash Accumulated of Coated GPF

2019-04-02
2019-01-0981
With accelerating exhaust gas regulations in recent years, not only CO / HC / NOx but also PN regulation represented by Euro 6 d, China 6 are getting stricter. PN reduction by engine combustion technology development also progresses, but considering RDE, PN reduction by after treatment technology is also indispensable. To reduce PN exhausted from the gasoline engine, it is effective to equip GPF with a filter structure. Considering the installation of GPF in limited space, we developed a system that so far replaces the second TWC with GPF for the TWC 2 bed system. In order to replace the second TWC with GPF, we chose the coated GPF with filtering and TWC functions. Since the initial pressure drop and the catalyst amount (purification performance) of coated GPF have a conflicting relationship, we developed the coated GPF that can achieve both the low initial pressure drop and high purification performance.
Technical Paper

Design of High Performance Coated GPF with 2D/3D Structure Analysis

2019-04-02
2019-01-0977
In recent years along with stringent the regulations, vehicles equipped with gasoline particulate filter (GPF) have started to launch. Compared to bare GPF, coated GPF (cGPF) requires not only PN filtration efficiency, low pressure drop, but also purification performance. In the wall flow type cGPF having a complicated the pore shape, the pore structure further irregularly changes depending on the coated state of the catalyst, so it is difficult to understand the matter of in-wall. In order to advance of cGPF function, it was researched that revealing the relevance between pore structure change in the wall and GPF function. Therefore, to understand the catalyst coated state difference, cGPF of several coating methods were prepared, and their properties were evaluated by various analyses, and performance was tested.
Technical Paper

Numerical Modeling Study of Detailed Gas Diffusivity into Catalyst Washcoat for Lean NOx Catalyst

2019-04-02
2019-01-0993
To evaluate the relationship between the exhaust gas purification performance and the catalyst pore properties related to gas diffusion, an elementary reaction model was combined with gas diffusion into catalyst pores, referred to as the pseudo-2D gas diffusion/reaction model. It was constructed for Pt/Al2O3 + CeO2 catalyst as lean NOx catalyst. The gas diffusion was described as macro pore diffusion between the catalyst particles and meso pore diffusion within the particle. The kinetic model was composed of 26 reactions of NO/CO/O2 chemistry including 17 Pt/Al2O3 catalyst reactions and 9 CeO2 reactions. Arrhenius parameters were optimized using activity measurement results from various catalysts with various pore properties, meso pore volume and diameter, macro pore volume and diameter, particle size, and washcoat thickness. Good agreement was achieved between the measured and calculated values.
Technical Paper

Development of Low Temperature Active Three Way Catalyst

2019-04-02
2019-01-1293
In recent years, fuel efficiency has been improved by using many technologies such as downsizing engine, turbocharger and direct injection to reduce CO2 emissions from vehicle. However, the temperature of the exhaust gas from the engines using these technologies becomes lower than that form conventional one. That increases the difficulty for three-way catalyst (TWC) to purify CO, HC and NOx enough because TWC is not warmed up just after engine starting. In order to reduce cold emission mentioned above, we have been studying the warmup strategy of which the key property is thermal mass of TWC. To achieve early warmup, thermal mass of TWC is reduced by lightening the weight of (1) substrate and (2) catalytic materials, namely washcoat amount. Along with the strategy, we have developed TWC with lightweight substrate and applied it from the 2016 model year CIVIC.
Technical Paper

Prediction Method of Snow Ingress Amount into the Engine Air Intake Duct Employing LES and Detailed Snow Accumulation Model

2019-04-02
2019-01-0805
When a vehicle is driven in snowy conditions, if a proper air intake design is not adopted, the snow lifted by the leading vehicles may penetrate into the engine air intake, in case of large snow ingress amount, causing a power drop. The evaluation of such risk for the intake is carried out through climatic wind tunnel tests, which cannot be conducted at the early stage of vehicle development when the prototype vehicle does not exist. In order to study that risk prior to the prototype vehicle delivery, computational fluid dynamics (CFD) which predicts the snow ingress amount accurately was established with taking into account unsteady air flow and snow accumulation. Large Eddy Simulation (LES) was used to reproduce the unsteady flow field, leading to a good agreement of the flow downstream from the snow generator with the experimental one measured by Particle Image Velocimetry (PIV). As for the snow particle behavior model, the Lagrangian method was chosen.
Technical Paper

Diesel CAI Combustion in Uniflow Scavenging 2-Stroke Engine Provided with Port Fuel Injection Device

2018-10-30
2018-32-0015
We studied a simple and cost effective controlled auto ignition (CAI) combustion engine in order to achieve simultaneous reduction of NOx and soot, which are issues in diffusion combustion. The engine type was a uniflow scavenging 2-stroke engine, and the fuel used was diesel, as is common in diesel engines. We examined the position of the injector that effectively forms the premixture and realized stable operation with diesel fuel by the low pressure fuel injection device for port fuel injection (PFI), and it was found that the CAI combustion ignition timing can be controlled through setting the air/fuel ratio that obtains the optimal ignition timing per operation conditions.
Journal Article

Ag-Type PM Oxidation Catalyst with Nd Added to Increase Contact Property between PM and Catalyst

2018-04-03
2018-01-0328
Honda diesel engine vehicles that go on the market in 2018 will be equipped with a newly developed silver (Ag)-type catalyzed diesel particulate filter (cDPF). Ag has high particulate matter (PM) oxidation performance, but conventional catalyst-carrying methods cause weak contact property between PM and Ag; therefore, the newly Ag-type cDPF was developed on the concept of enhancing the property of contact between PM and the catalyst to realize contact property enhancement at the macro, meso, and nano scales. As a result, the newly developed catalyst showed an enhancement of T90 performance by a factor of approximately 2 relative to the conventional Ag-type catalyst in fresh condition. Durability in the environment of an automobile in use was examined through hydrothermal aging, lean-rich (L/R) aging, sulfur (S) poisoning, and ash deposition. The results have confirmed that hydrothermal aging is the greatest factor in deterioration.
Technical Paper

Study of an Aftertreatment System for HLSI Lean-burn Engine

2018-04-03
2018-01-0945
Lean-burn is an effective means of reducing CO2 emissions. To date, Homogenous Lean Charge Spark Ignition (HLSI) combustion, which lowers emissions of both CO2 and NOx, has been studied. Although HLSI realizes lower emission, it is a major challenge for lean-burn engines to meet SULEV regulations, so we have developed a new aftertreatment system for HLSI engines. It consists of three types of catalysts that have different functions, as well as special engine control methods. As the first stage in achieving SULEV emissions, this study focused on enhancing performance under lean conditions. HLSI engine exhaust gases contain high concentrations of hydrocarbons, including a large amount of paraffin, which are difficult to purify, rather than low concentrations of NOx. Therefore, the key point in low emissions is to purify not only NOx, but also high concentrations of paraffin at the same time.
Technical Paper

Study of High Power Dynamic Charging System

2017-03-28
2017-01-1245
The use of electric vehicles (EV) is becoming more widespread as a response to global warming. The major issues associated with EV are the annoyance represented by charging the vehicles and their limited cruising range. In an attempt to remove the restrictions on the cruising range of EV, the research discussed in this paper developed a dynamic charging EV and low-cost infrastructure that would make it possible for the vehicles to charge by receiving power directly from infrastructure while in motion. Based on considerations of the effect of electromagnetic waves, charging power, and the amount of power able to be supplied by the system, this development focused on a contact-type charging system. The use of a wireless charging system would produce concerns over danger due to the infiltration of foreign matter into the primary and secondary coils and the health effects of leakage flux.
Journal Article

Development of Base Metal Catalyst and Its Compatibility Study for Motorcycle Applications

2016-11-08
2016-32-0071
We developed a copper catalyst using zero Platinum group metals (hereafter PGMs) to fit motorcycle specific emission gas environment. Though many research reports to develop catalyst without using PGMs that are precious and costly resources are available, no reports had proven Base Metal Catalyst development to meet actual emission regulation equivalent to PGM catalysts. Compared to conventional PGM catalysts, higher temperature is required to keep high catalytic conversion efficiency by utilizing properties of this Base Metal Catalyst. Thus, this Base Metal Catalyst is located in cross coupling position, though it is rare case in motorcycle. This catalyst location could cause negative impacts on engine knocking, engine performance and drivability. This time, to overcome such negative impacts we optimized whole exhaust system, including parts around catalyst.
Technical Paper

On Demand Octane Number Enhancement Technology by Aerobic Oxidation

2016-10-17
2016-01-2167
For the purpose of developing onboard gasoline reforming technology for higher octane number fuel on demand, octane number enhancement of gasoline surrogate by aerobic oxidation using N-hydroxyphthalimide catalyst was investigated. At first, octane numbers of the oxygen-containing products from alkane and aromatic compound were estimated using a fuel ignition analyzer. As a result, not only alcohol but also ketones and aldehydes have higher octane numbers than the original alkanes and aromatic compound. Next, gasoline surrogate was oxidized aerobically with N-hydroxyphthalimide derivative catalyst and cobalt catalyst at conditions below 100 °C. As a result, fuel molecules were oxidized to produce alcohols, ketones, aldehydes, and carboxylic acids. N-hydroxyphthalimide derivative catalyst with higher solubility in gasoline surrogate has higher oxidation ability. Furthermore, the estimated octane number of the oxidized gasoline surrogate improves 17 RON.
Technical Paper

Aerodynamic Performance Evaluation System at the Early Concept Stage of Automotive Styling Development Based on CFD

2016-04-05
2016-01-1584
An aerodynamic styling evaluation system employed at an early automotive development stage was constructed. The system based on CFD consists of exterior model morphing, computational mesh generation, flow calculation and result analysis, and the process is automatically and successively executed by process automation software. Response surfaces and a parallel coordinates chart output by the system allow users to find a well-balanced exterior form, in terms of aerodynamics and exterior styling, in a wide design space which are often arduous to be obtained by a conventional CAE manner and scale model wind tunnel testing. The system was designed so that 5-parameter study is completed within approximately two days, and consequently, has been widely applied to actual exterior styling development. An application for a hatchback vehicle is also introduced as an actual example.
Technical Paper

Influences of Turbulence Scale on Development of Spherically Propagating Flame under High EGR Conditions

2015-09-01
2015-01-1868
EGR (Exhaust gas recirculation) can reduce the pumping loss and improve the thermal efficiency of spark ignition engines. The techniques for combustion enhancement under high EGR rate condition has been required for further improvement of the thermal efficiency. In order to develop the technique of combustion enhancement by turbulence, the influences of turbulence scale on combustion properties, such as probability of flame propagation, EGR limit of flame propagation, flame quenching and combustion duration were investigated under the condition of same turbulence intensity. Experiments were carried out for stoichiometric spherically propagating turbulent i-C8H18/Air/N2 flames using a constant volume vessel. It was clarified that all of these combustion properties were affected by the turbulence scale. The development of spherically propagating turbulent flame during flame propagation was affected by the turbulence scale.
Journal Article

The Predictive Simulation of Exhaust Pipe Narrow-band Noise

2015-04-14
2015-01-1329
A method of predictive simulation of flow-induced noise using computational fluid dynamics has been developed. The goal for the developed method was application in the vehicle development process, and the target of the research was therefore set as balancing the realization of a practical level of predictive accuracy and a practical computation time. In order to simulate flow-induced noise, it is necessary to compute detailed eddy flows and changes in the density of the air. In the research discussed in this paper, the occurrence or non-occurrence of flow-induced noise was predicted by conducting unsteady compressible flow calculation using large eddy simulation, a type of turbulence model. The target flow-induced noise for prediction was narrow-band noise, a type of noise in which sound increases in specific frequency ranges.
Journal Article

Study of Reproducibility of Pedal Tracking and Detection Response Task to Assess Driver Distraction

2015-04-14
2015-01-1388
We have developed a bench test method to assess driver distraction caused by the load of using infotainment systems. In a previous study, we found that this method can be used to assess the task loads of both visual-manual tasks and auditory-vocal tasks. The task loads are assessed using the performances of both pedal tracking task (PT) and detection response task (DRT) while performing secondary tasks. We can perform this method using simple equipment such as game pedals and a PC. The aim of this study is to verify the reproducibility of the PT-DRT. Experiments were conducted in three test environments in which test regions, experimenters and participants differed from each other in the US, and the test procedures were almost the same. We set two types of visual-manual tasks and two types of auditory-vocal tasks as secondary tasks and set two difficulties for each task type to vary the level of task load.
Journal Article

The Thermal and Aerodynamic Development of a Cooling and Heat Resistance Package for a New Hybrid Sports Car

2015-04-14
2015-01-1526
A sports car exhibits many challenges from an aerodynamic point of view: drag that limits top speed, lift - or down force - and balance that affects handling, brake cooling and insuring that the heat exchangers have enough air flowing through them under several vehicle speeds and ambient conditions. All of which must be balanced with a sports car styling and esthetic. Since this sports car applies two electric motors to drive front axle and a high-rev V6 turbo charged engine in series with a 9-speed double-clutch transmission and one electric motor to drive rear axle, additional cooling was required, yielding a total of ten air cooled-heat exchangers. It is also a challenge to introduce cooling air into the rear engine room to protect the car under severe thermal conditions. This paper focuses on the cooling and heat resistance concept.
Journal Article

NOx Trap Three-Way Catalyst (N-TWC) Concept: TWC with NOx Adsorption Properties at Low Temperatures for Cold-Start Emission Control

2015-04-14
2015-01-1002
A new concept for trapping NOx and HC during cold start, the NOx Trap Three-Way Catalyst (N-TWC), is proposed. N-TWC adsorbs NOx at room temperature, and upon reaching activation temperature under suitable air-fuel ratio conditions, it reduces the adsorbed NOx. This allows a reduction in NOx emissions during cold start. N-TWC's reduction mechanism relies on NOx adsorption sites which are shown to be highly dispersed palladium on acid sites in the zeolite. Testing on an actual vehicle equipped with N-TWC confirmed that N-TWC is able to reduce emissions of NOx and HC during cold start, which is a challenge for conventional TWCs.
X